首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sheng X  Guo X  Lu XM  Lu GY  Shao Y  Liu F  Xu Q 《Bioconjugate chemistry》2008,19(2):490-498
A preorganized cleft dinuclear zinc(II) complex of 2,6-bis(1-methyl-1,4,7-triazacyclonon-1-yl)pyridine 1 as an artificial nuclease was prepared via an improved method. The interactions of 1, 2 [1,4,7-triazacyclononane (TACN)], and their zinc(II) complexes with calf thymus DNA were studied by spectroscopic techniques, including fluorescence and CD spectroscopy. The results indicate that the DNA binding affinities of these compounds are in the following order: Zn(II)2 -1 > Zn(II) -2 > 1 > 2. The binding constants of the Zn (II)2 -1 and Zn(II)-2 complexes are 3.57 x 10(6) and 1.43 x 10(5) M(-1), respectively. Agarose gel electrophoresis was used to assess the plasmid pUC 19 DNA cleavage activities in the presence of the dinuclear Zn (II)2 -1 complex, which exhibits powerful DNA cleavage efficiency. Kinetic data for DNA cleavage promoted by the Zn(II)2 -1 complex under physiological conditions give the observed rate constant ( k obs) of 0.136 h(-1), which shows an 10(7)-fold rate acceleration over uncatalyzed supercoiled DNA. The comparison of the dinuclear Zn(II)2 -1 complex with the mononuclear zinc(II) complex of 1,4,7-triazacyclononane indicates that the DNA cleavage acceleration promoted by the Zn(II)2 -1 complex is due to the efficient cooperative catalysis of the two proximate zinc(II) cation centers. A hydrolytic mechanism of the cleavage process was suggested, and a preliminary study of the antitumor activity was also conducted.  相似文献   

2.
Dinuclear macrocyclic polyamine zinc(II) complexes, which have two cyclen groups linked by flexible spacers, have been synthesized as DNA cleavage agents. The structures of these new dinuclear complexes are consistent with the data obtained from elemental analysis, MS and 1H NMR spectroscopy. The catalytic activity of these dinuclear complexes on DNA cleavage was studied. The results showed that the dinuclear zinc(II) complexes can catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) under physiological conditions to produce selectively nicked DNA (Form II).  相似文献   

3.
Mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes, which could attach to peptide nucleic acid (PNA), were synthesized as DNA cleavage agents. The structures of these new mononuclear complexes were identified by MS and (1)H NMR spectroscopy. The catalytic activities on DNA cleavage of these mononuclear complexes with different central metals were subsequently studied, which showed that copper complex was better catalyst in the DNA cleavage process than zinc and cobalt complexes. The effects of reaction time, concentration of complexes were also investigated. The results indicated that the copper(II) complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) under physiological conditions to produce selectively nicked DNA (Form II, no Form III produced) with high yields. The mechanism of the cleavage process was also studied.  相似文献   

4.
As an important nucleobase in RNA, uracil was introduced into the side chain of cyclen (1,4,7,10-tetraazacyclododecane) by using phenylene dimethylene group as bridge. The target compounds 5 were obtained in high yields. Subsequent experiments demonstrated that the uracil-cyclen conjugates can bind Zn(2+) cation rapidly in water, and the catalytic activities of their Zn(II) complexes 6 in DNA cleavage were also studied. The results showed that Zn(II) complexes can catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) to produce nicked DNA (Form II and Form III) with high selectivity. In water solution, complex 6b may form a unique and stable supramolecular structure, which benefits the DNA cleavage process.  相似文献   

5.
Type IA topoisomerase activities are essential for resolving DNA topological barriers via an enzyme-mediated transient single strand DNA break. Accumulation of topoisomerase DNA cleavage product can lead to cell death or genomic rearrangement. Many antibacterial and anticancer drugs act as topoisomerase poison inhibitors that form stabilized ternary complexes with the topoisomerase covalent intermediate, so it is desirable to identify such inhibitors for type IA topoisomerases. Here we report that organomercury compounds were identified during a fluorescence based screening of the NIH diversity set of small molecules for topoisomerase inhibitors that can increase the DNA cleavage product of Yersinia pestis topoisomerase I. Inhibition of relaxation activity and accumulation of DNA cleavage product were confirmed for these organomercury compounds in gel based assays of Escherichia coli topoisomerase I. Hg(II), but not As(III), could also target the cysteines that form the multiple Zn(II) binding tetra-cysteine motifs found in the C-terminal domains of these bacterial topoisomerase I for relaxation activity inhibition. Mycobacterium tuberculosis topoisomerase I activity is not sensitive to Hg(II) or the organomercury compounds due to the absence of the Zn(II) binding cysteines. It is significant that the type IA topoisomerases with Zn(II) binding domains can still cleave DNA when interfered by Hg(II) or organomercury compounds. The Zn(II) binding domains found in human Top3α and Top3β may be potential targets of toxic metals and organometallic complexes, with potential consequence on genomic stability and development.  相似文献   

6.
The known action of Cu, Zn superoxide dismutase (Cu(2)Zn(2)SOD) that converts O(2)(-) to O(2) and H(2)O(2) plays a crucial role in protecting cells from toxicity of oxidative stress. However, the overproduction of Cu(2)Zn(2)SOD does not result in increased protection but rather creates a variety of unfavorable effects, suggesting that too much Cu(2)Zn(2)SOD may be injurious to the cells. The present study examined the DNA cleavage activity mediated by a Cu(n)SOD that contains 1-4 copper ions, in order to obtain an insight into the aberrant copper-mediated oxidative chemistry in the enzyme. A high SOD activity was observed upon metallation of the apo-form of Cu(2)Zn(2)SOD with Cu(II), indicating that nearly all of the Cu(II) in the Cu(n)SOD is as active as the Cu(II) in the copper site of fully active Cu(2)Zn(2)SOD. Using a supercoiled DNA as substrate, significant DNA cleavage was observed with the Cu(n)SOD in the presence of hydrogen peroxide or mercaptoethanol, whereas DNA cleavage with free Cu(II) ions can occur only <5% under the same conditions. Comparison with other proteins shows that the DNA cleavage activity is specific to some proteins including the Cu(n)SOD. The steady state study suggests that a cooperative action between the SOD protein and the Cu(II)may appear in the DNA cleavage activity, which is independent of the number of Cu(II) in the Cu(n)SOD. The kinetic study shows that a two-stage reaction was involved in DNA cleavage. The effects of various factors including EDTA, radical scavengers, bicarbonate anion, and carbon dioxide gas molecules on the Cu(n)SOD-mediated DNA cleavage activity were also investigated. It is proposed that DNA cleavage occurs via both hydroxyl radical oxidation and hydroxide ion hydrolysis pathways. This work implies that any form of the copper-containing SOD enzymes (including Cu(2)Zn(2)SOD and its mutants) might have the DNA cleavage activity.  相似文献   

7.
Three ligands which contain histidine and conjugated by a flexible linker, have been characterized and evaluated as DNA cleavage agents. The cleavage activity of metal complexes were evaluated by monitoring the conversion of supercoiled plasmid DNA (pUC19) (Form I) to nicked circular DNA (Form II) by agarose gel electrophoresis. The results showed that the cleavage activity of Cu(II) complexes was enhanced compared with histidine. Specially, at a high reaction concentration (0.2 mM), Cu(II) complexes can cleave the plasmid DNA with some selectivity.  相似文献   

8.
The hydrolytic activity of the 1,3,5-triaminocyclohexane derivatives TACH, TACI and TMCA complexed to Zn(II) and Cu(II) towards a model phosphoric ester and plasmid DNA has been evaluated by means of spectroscopic and gel-electrophoresis techniques. At conditions close to physiological, a prominent cleavage effect mediated by the nature of the ligand and metal ion was generally observed. TACI complexes are the most active in relaxing supercoiled DNA, the effect being explained by the affinity of the hydroxylated ligand for the nucleic acid. As indicated by the dependence of cleavage efficiency upon pH, Zn(II)-complexes act by a purely hydrolytic mechanism. In the case of Cu(II)-complexes, although hydrolysis should be prominent, involvement of an oxidative pathway cannot be completely ruled out.  相似文献   

9.
The syntheses, characteristics of dinuclear macrocyclic polyamine zinc complexes and their interaction with plasmid DNA are reported. The two cyclen (1,4,7,10-tetraazacyclododecane) moieties are bridged by rigid and flexible linkages. The crystal structures of Zn2C27H43N8O15Cl4 [5c.(ClO4)3.2H2O] and Zn2C30H43N10O13Cl3 [5e.(ClO4)3.H2O] have been determined. The complexes crystallize in the monoclinic space group C2/c and P2(1)/c with the following unit cell parameters: 5c.(ClO4)3.2H2O: a=32.568(4)A, b=14.8593(17)A, c=19.443(2)A, alpha=90.00 degrees , beta=119.435(4) degrees , gamma=90.00 degrees , Dc=1.551 mg/m3, FW=956.71, F(000)=3932; 5e.(ClO4)3.H2O: a=15.807(2)A, b=16.756(2)A, c=16.161(2)A, alpha=90.00 degrees , beta=97.062(4) degrees , gamma=90.00 degrees , Dc=1.546 mg/m3, FW=988.83, F(000)=2032. The distance between the two Zn(II) ions is about 4.0 A. The structures show that two zinc ions can synergistically interact with the substrate DNA. With this novel structural characteristics, the dinuclear macrocyclic polyamine Zn(II) complexes via the synergetic effect between the two zinc ions can catalyze the cleavage of plasmid DNA (pUC18) with unprecedented speed at physiological conditions.  相似文献   

10.
Escherichia coli DNA topoisomerase I catalyzes relaxation of negatively supercoiled DNA. The reaction proceeds through a covalent intermediate, the cleavable complex, in which the DNA is cleaved and the enzyme is linked to the DNA via a phosphotyrosine linkage. Each molecule of E. coli DNA topoisomerase I has been shown to have three tightly bound zinc(II) ions required for relaxation activity (Tse-Dinh, Y.-C., and Beran-Steed, R.K. (1988) J. Biol. Chem. 263, 15857-15859). It is shown here that Cd(II) could replace Zn(II) in reconstitution of active enzyme from apoprotein. The role of metal was analyzed by studying the partial reactions. The apoenzyme was deficient in sodium dodecyl sulfate-induced cleavage of supercoiled PM2 phage DNA. Formation of covalent complex with linear single-stranded DNA was also reduced in the absence of metal. However, the cleavage of small oligonucleotide was not affected, and the apoenzyme could religate the covalently bound oligonucleotide to another DNA molecule. Assay of noncovalent complex formation by retention of 5'-labeled DNA on filters showed that the apoenzyme was not inhibited in noncovalent binding to DNA. It is proposed that zinc(II) coordination in E. coli DNA topoisomerase I is required for the transition of the noncovalent complex with DNA to the cleavable state.  相似文献   

11.
Novel chiral Schiff base ligands (R)/(S)‐2‐amino‐3‐(((1‐hydroxypropan‐2‐yl)imino)methyl)‐4H‐chromen‐4‐one (L1 and L2) derived from 2‐amino‐3‐formylchromone and (R/S)‐2‐amino‐1‐propanol and their Cu(II)/Zn(II) complexes ( R1 , S1 , R2 , and S2 ) were synthesized. The complexes were characterized by elemental analysis, infrared (IR), hydrogen (1H) and carbon (13C) nuclear magnetic resonance (NMR), electrospray ionization‐mass spectra (ESI‐MS), and molar conductance measurements. The DNA binding studies of the complexes with calf thymus were carried out by employing different biophysical methods and molecular docking studies that revealed that complexes R1 and S1 prefers the guanine–cytosine‐rich region, whereas R2 and S2 prefers the adenine–thymine residues in the major groove of DNA. The relative trend in Kb values followed the order R1 S1 R2 S2 . This observation together with the findings of circular dichroic and fluorescence studies revealed maximal potential of (R)‐enantiomeric form of complexes to bind DNA. Furthermore, the absorption studies with mononucleotides were also monitored to examine the base‐specific interactions of the complexes that revealed a higher propensity of Cu(II) complexes for guanosine‐5′‐monophosphate disodium salt, whereas Zn(II) complexes preferentially bind to thymidine‐5′‐monophosphate disodium salt. The cleavage activity of R1 and R2 with pBR322 plasmid DNA was examined by gel electrophoresis that revealed that they are good DNA cleavage agents; nevertheless, R1 proved to show better DNA cleavage ability. Topoisomerase II inhibitory activity of complex R1 revealed that the complex inhibits topoisomerase II catalytic activity at a very low concentration (25 μM). Furthermore, in vitro antitumor activity of complexes R1 and S1 were screened against human carcinoma cell lines of different histological origin. Chirality 24:977–986, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Abstract

The hydrolytic activity of the 1,3,5-triaminocycloxexane derivatives TACH, TACI and TMCA complexed to Zn(II) and Cu(II) towards a model phosphoric ester and plasmid DNA has been evaluated by means of spectroscopic and gel-electrophoresis techniques. At conditions close to physiological, a prominent cleavage effect mediated by the nature of the ligand and metal ion was generally observed. TACI complexes are the most active in relaxing supercoiled DNA, the effect being explained by the affinity of the hydroxylated ligand for the nucleic acid. As indicated by the dependence of cleavage efficiency upon pH, Zn(II)-complexes act by a purely hydrolytic mechanism. In the case of Cu(II)-complexes, although hydrolysis should be prominent, involvement of an oxidative pathway cannot be completely ruled out.  相似文献   

13.
Results from an investigation in an in vivo model of STZ-induced diabetic rats demonstrate that compound bis(1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate)zinc(II), Zn(dmpp)2, significantly lowers the blood glucose levels of individuals, thus showing evidence of glucose lowering activity.The compound was selected from a set of eight zinc(II) complexes of 3-hydroxy-4-pyridinones with diverse lipophilicity that were prepared and characterized in our laboratory. Assessment of insulin-like activity of the complexes was firstly performed in vitro by measuring the inhibition of FFA release in isolated rat adipocytes. The results indicate that compounds bis(2-methyl-3-hydroxy-4-pyridinonate)zinc(II), Zn(mpp)2 and Zn(dmpp)2 display significantly higher activity than that of the respective positive control thus suggesting its selection for in vivo tests.Safety evaluation of the active zinc(II) compounds was performed in freshly isolated rat hepatocytes. The results support that cell viability is not significantly different from the control set after 1 and 2 h of incubation with both zinc(II) complexes.  相似文献   

14.
New glucopyranosyl Schiff base zinc complexes, [Zn(GlcSal)(2) ] (1; GlcSalH=N-(2-deoxy-β-D-glucopyranos-2-yl-salicylaldimine) and [Zn(AcOGlcSal)(2) ] (2; AcOGlcSalH=N-(2-deoxy-β-D-1,3,4,6-tetraacetylglucopyranos-2-yl-salicylaldimine) were synthesized, and characterized by spectral and analytical methods. The interaction between the Zn complexes and mononucleotides was investigated by (1) H-NMR, (31) P-NMR and UV/VIS spectroscopies. Mononucleotides, cytidine 5'-monophosphate (CMP) and uridyl 5'-monophosphate (UMP), interacted with these complexes to form a 1?:?1 complex with 1 and a 1?:?2 complex with 2, depending on the presence of the OH group of glucopyranosyl substituents. The DNA-cleavage activities of 1 and 2 were studied using plasmid DNA (pBR322) in a medium of 5?mM Tris?HCl/50?mM NaCl buffer in the presence of H(2) O(2) . The DNA-cleavage activity decreased in the order of 2>1>Zn(OAc)(2) , indicating the significant promoting effect of the glucopyranosyl Schiff base ligand and the participation of the glucopyranosyl OH groups in the cleavage mechanism. The mechanism of the DNA cleavage by 1 and 2 was investigated by evaluation of the effect of a HO(.) radical scavenger and a singlet-oxygen ((1) O(2) ) quencher under aerobic conditions. The former exhibited little effect, excluding the HO(.) radical as an active species and supporting the hydrolysis mechanism for the main process of the DNA cleavage. The latter quencher somewhat hindered the cleavage, indicating the partial participation of a (1) O(2) as a competitive active species in the present system.  相似文献   

15.
16.
Abstract

In this work, we have synthesized a few novel mononuclear complexes of Cu(II), Co(II), Ni(II) and Zn(II) using a pyrazolone-derived Schiff base ligand. They were characterized by spectroscopic and analytical methods. The elemental analyses, UV-Vis, magnetic moment values and molar conductance of the complexes reveal that the complexes adopt an octahedral arrangement around the central metal ions. The interaction of complexes with CT-DNA was studied by absorption spectral titration and viscosity measurements. The observed data show that the complexes bind with CT-DNA via an intercalation mode. Efficient pUC18 DNA cleavage ability of the synthesized compounds was explored by gel electrophoresis. The antimicrobial activity of these compounds against a set of bacterial and fungal strains reveals that the complexes exhibit better activity than the free ligand. Moreover, all the complexes were evaluated against two cancer (HeLa and HepG2) and one normal (NHDF) cell lines. The data were compared with cisplatin. Anti–inflammatory activity has been experimentally validated which proves that theoretical predictions concur with the experimental results. In addition, molecular docking studies have been performed to consider the nature of binding mode and binding affinity of these compounds with DNA (1BNA) and protein (3hb5). These studies reveal that the mode of binding is intercalation and the complexes have higher binding energy scores than the free ligand.  相似文献   

17.
Twelve zinc(II) complexes with thiosemicarbazone and semicarbazone ligands were prepared and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FT-IR and 1H and 13C NMR spectroscopy. Seven three-dimensional structures of zinc(II) complexes were determined by single-crystal X-ray analysis. Their antimicrobial activities were evaluated by MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 5- and 6-coordinate zinc(II) complexes with a tridentate thiosemicarbazone ligand (Hatsc), ([Zn(atsc)(OAc)](n) 1, [Zn(Hatsc)(2)](NO(3))(2).0.3H(2)O 2, [ZnCl(2)(Hatsc)] 3 and [Zn(SO(4))(Hatsc)(H(2)O)].H(2)O 4 [Hatsc=2-acetylpyridine(thiosemicarbazone)]), showed antimicrobial activities against test organisms, which were different from those of free ligands or the starting zinc(II) compounds. Especially, complex 2 showed effective activities against P. aeruginosa, C. albicans and moderate activities against S. cerevisiae and two molds. These facts are in contrast to the results that the 5- or 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridine-4N-morpholinethiosemicarbazone, ([Zn(mtsc)(2)].0.2EtOH 5, the previously reported catena-poly [Zn(mtsc)-mu-(OAc-O,O')](n) and [Zn(NO(3))(2)(Hmtsc)] [Hmtsc=2-acetylpyridine (4N-morpholyl thiosemicarbazone)]), showed no activities against the test microorganisms. The 5- and 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridinesemicarbazone, ([Zn(OAc)(2)(Hasc)] 6 and [Zn(Hasc)(2)](NO(3))(2) 7 [Hasc=2-acetylpyridine(semicarbazone)]), showed no antimicrobial activities against bacteria, yeasts and molds. Complex [ZnCl(2)(Hasc)] 8, which was isostructural to complex 3, showed modest activity against Gram-positive bacterium, B. subtilis. The 1:1 complexes of zinc(II) with pentadentate thiosemicarbazone ligands, ([Zn(dmtsc)](n) 9 and [Zn(datsc)](n) 10 [H(2)dmtsc=2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone) and H(2)datsc=2,6-diacetylpyridine bis(thiosemicarbazone)]), did not inhibit the growth of the test organisms. On the contrary, 7-coordinate zinc(II) complexes with one pentadentate semicarbazone ligand and two water molecules, ([Zn(H(2)dasc)(H(2)O)(2)](OAc)(2).5.3H(2)O 11 and [Zn(H(2)dasc)(H(2)O)(2)](NO(3))(2).H(2)O 12 [H(2)dasc=2,6-diacetylpyridine bis(semicarbazone)]), showed modest to moderate activities against bacteria. Based on the X-ray structures, the structure-activity correlation for the antimicrobial activities was elucidated. The zinc(II) complexes with 4N-substituted ligands showed no antimicrobial activities. In contrast to the previously reported nickel(II) complexes, properties of the ligands such as the ability to form hydrogen bonding with a counter anion or hydrated water molecules or the less bulkiness of the 4N moiety would be a more important factor for antimicrobial activities than the coordination number of the metal ion for the zinc(II) complexes.  相似文献   

18.
19.
The binuclear zinc(II) complex, [Zn2(HPTP)(CH3COO)]2+ was found highly active to cleave DNA (double-strand super-coiled DNA, pBR322 and phix174) in the presence of hydrogen peroxide. However, no TBARS (2-thiobarbituric acid reactive substance) formation was detected in a solution containing 2-deoxyribose (or 2'-deoxyguanosine, etc); where (HPTP) represents N,N,N'-N'-tetrakis(2-pyridylmethyl)-1,3-diamino-2-propanol. These facts imply that DNA cleavage reaction by the binuclear Zn(II)/H2O2 system should be due to a hydrolytic mechanism, which may be attributed to the enhanced nucleophilicity but depressed electrophilicity of the peroxide ion coordinated to the zinc(II) ion. DFT (density-functional theory) calculations on the peroxide adduct of monomeric zinc(II) have supported the above consideration. Similar DFT calculations on the peroxide adducts of the Al(III) and La(III) compounds have revealed that electrophilicity of the peroxide ion in these compounds is strongly reduced. This gives an important information to elucidate the fact that La3+ can enhance the growth of plants under certain conditions.  相似文献   

20.
BslI restriction endonuclease cleaves the symmetric sequence CCN(7)GG (where N=A, C, G or T). The enzyme is composed of two subunits, alpha and beta, that form a heterotetramer (alpha(2)beta(2)) in solution. The alpha subunit is believed to be responsible for DNA recognition, while the beta subunit is thought to mediate cleavage. Here, for the first time, we provide experimental evidence that BslI binds Zn(II). Specifically, using X-ray absorption spectroscopic analysis we show that the alpha subunit of BslI contains two Zn(Cys)(4)-type zinc motifs similar to those in the DNA-binding domain of the glucocorticoid receptor. This conclusion is supported by genetic analysis of the zinc-binding motifs, whereby amino acid substitutions in the zinc finger motifs are demonstrated to abolish or impair cleavage activity. An additional putative zinc-binding motif was identified in the beta subunit, consistent with the X-ray absorption data. These data were corroborated by proton induced X-ray emission measurements showing that full BslI contains at least three fully occupied Zn sites per alpha/beta heterodimer. On the basis of these data, we propose a role for the BslI Zn motifs in protein-DNA as well as protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号