首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Effect of protein deficient diet on hepatic plasma membrane fluidity has been studied in rats using (i) steady state fluorescence polarization and anisotropy, (ii) phospholipid and cholesterol contents, (iii) phospholipid fatty acid composition, (iv) turnover of phosphatidyl choline (PC), and (v) activities of membrane-bound enzymes as parameters and rats fed casein (20%) diet as standard group. A significant increase in steady state fluorescence and anisotropy values was registered in the deficient group, indicating increased resistance and hence decrease in fluidity of the plasma membrane. Supplementation of the diet with lysine and threonine improved these values, thereby suggesting the significance of diet for membrane fluidity. Simultaneous significant alterations in other parameters, viz. (i) decrease in PC, PE and free cholesterol and increase in esterified cholesterol contents, (ii) decrease in unsaturation of fatty acids of PC, (iii) decrease in incorporation of NaH2 32PO4, [CH3-14C]choline and [CH3-14C]methionine into plasma membrane PC, and (iv) decrease in activities of plasma membrane 5'-nucleotidase and phosphodiesterase along with increase of (Na(+)-K+)ATPase and adenyl cyclase, were observed in the deficient group which on supplementation with lysine and threonine showed improvement over alterations.  相似文献   

2.
The neuromodulator adenosine can be released as such, mainly activating inhibitory A1 receptors, or formed from released ATP, preferentially activating facilitatory A2A receptors. We tested if changes in extracellular adenosine metabolism paralleled changes in A1/A2A receptor neuromodulation in the aged rat hippocampus. The evoked release and extracellular catabolism of ATP were 49-55% lower in aged rats, but ecto-5'-nucleotidase activity, which forms adenosine, was 5-fold higher whereas adenosine uptake was decreased by 50% in aged rats. The evoked extracellular adenosine accumulation was 30% greater in aged rats and there was a greater contribution of the ecto-nucleotidase pathway and a lower contribution of adenosine transporters for extracellular adenosine formation in nerve terminals. Interestingly, a supramaximal concentration of an A1 receptor agonist, N6-cyclopentyladenosine (250 nM) was less efficient in inhibiting (17% in old versus 34% in young) and A2A receptor activation with 30 nM CGS21680 was more efficient in facilitating (63% in old versus no effect in young) acetylcholine release from hippocampal slices of aged compared with young rats. The parallel changes in the metabolic sources of extracellular adenosine and A1/A2A receptor neuromodulation in aged rats further strengthens the idea that different metabolic sources of extracellular adenosine are designed to preferentially activate different adenosine receptor subtypes.  相似文献   

3.
Male rats were fed diets containing olive or marine fish oils (10% w/w) with or without added cholesterol (1% w/w). After six weeks of feeding, the major fatty acid composition, fluidity, fatty acid desaturating and cholesterol biosynthesis/esterification related enzymes of liver microsomes were determined. Both olive oil and marine fish oil diets, without added cholesterol, enriched content of oleic and docosahexaenoic acids, respectively, of rat liver microsomes. The results were consistent with reduction in delta 6 and delta 5 desaturation of n-6 essential fatty acids and higher fluidity in the marine origin oil group. Inclusion of cholesterol into diets resulted in decreased membrane arachidonic acid content, with concomitant increase in linoleic acid content. Cholesterol feeding also decreased delta 6 and delta 5 desaturase activities, as well as membrane fluidity. Furthermore, the activity of acyl-CoA:cholesterol acyltransferase decreased, whereas the activity of hydroxymethylglutaryl-CoA reductase increased, in liver microsomes from both cholesterol-fat groups.  相似文献   

4.
The lipid fluidity in purified plasma membranes (PM) of murine leukemic GRSL cells, as measured by fluorescence polarization, is much higher than in PM of normal thymocytes. This was found to be due to relatively low contents of cholesterol and sphingomyelin and a high amount of unsaturated fatty acyl chains, especially linoleic acid, in the phospholipids. PM from GRSL cells contain markedly more phosphatidylethanolamine than those from thymocytes. For both GRSL cells and thymocytes the detailed lipid composition of isolated PM was compared with that of the corresponding shed extracellular membranes (ECM), which were isolated from the ascites fluid and from thymus cell suspensions, respectively. The somewhat decreased lipid fluidity of thymocyte ECM as compared to their PM, can be ascribed to the increased cholesterol/phospholipid molar ratio (0.88 vs. 0.74). No other major differences were found between the lipid composition of these membranes. In contrast, significant differences were found between PM and ECM from GRSL cells. In this system a much lower lipid fluidity of the shed ECM was found, due to the much increased cholesterol/phospholipid molar ratio (3.5-fold) and sphingomyelin (9-fold) content, as compared to the PM. Further, the ECM contain relatively more lysophosphatidylethanolamine and less phosphatidylcholine and -inositol. ECM contain a higher amount of polyunsaturated fatty acids, especially in the phosphatidylethanolamine and lysophosphatidylethanolamine classes. On the other hand, the fatty acids of phosphatidylcholine and lysophosphatidylcholine are more saturated than in PM. In particular, ECM of GRSL cells contain less oleic and linoleic acid residues and more arachidonic acid and 22:polyunsaturated fatty acid residues than PM. The possible relevance of these differences with respect to the mechanism of shedding of vesicles from the cell surface, is discussed.  相似文献   

5.
Unsaturated free fatty acids and adenosine operate two neuromodulatory systems with opposite effects on neuronal function. Here, we tested if fatty acids controlled inhibitory adenosine A1 receptors. Arachidonate (AA, 10 microM) decreased the Bmax of an A1 receptor agonist, (R)-[3H]phenylisopropyladenosine (PIA; from 812 to 267 fmol x mg(-1) protein), and antagonist, [3H]1,3-dipropyl-8-cyclopentylxanthine (DPCPX; from 994 to 311 fmol x mg(-1) protein) and decreased the Kd of [3H]PIA (from 1.20 to 0.57 nM) binding to brain membranes of young adult rats (2 months old), these effects being mimicked by other cis but not trans unsaturated or saturated fatty acids. AA (10 microM) increased the potency of the A1 receptor agonist, 2-chloroadenosine to inhibit hippocampal synaptic transmission in young adult rats (EC50 decreased from 337 to 237 nM), which may constitute a safety feedback mechanism to control AA-induced neurotoxicity. Upon aging, there were increased free fatty acid levels and a concomitant decreased density of A1 receptors. This was more marked in hippocampal nerve terminals of aged rats (24 months old) and may be the determinant factor contributing to the lower potency of 2-choloroadenosine in aged rats (EC50 = 955 nM), in spite of the decreased Kd of PIA binding upon aging. The effects of AA on A1 receptor binding were attenuated upon aging, AA being devoid of effects in aged rats. Accordingly, AA (10 microM) failed to modify the potency of 2-choloroadenosine in aged rats (EC50 = 997 nM). However, albumin, which quenches free fatty acids, increased A1 receptor density by 65% and 2-chloroadenosine potency (EC50 = 703 nM) in aged rats, suggesting that the increased fatty acids levels in aged rats may contribute to the decreased potency of A1 receptor agonists in aged rats. Also, the observed saturation of the control by AA of A1 receptors may contribute to the decreased adaptability of neuromodulation to different firing conditions in aged rats.  相似文献   

6.
Male rats were fed diets containing olive (OO) or evening primrose (EPO) oil (10% w/w), with or without added cholesterol (1% w/w). After 6-week feeding, the lipid and fatty acid compositions, fluidity, and fatty acid desaturating and cholesterol biosynthesis/esterification related enzymes of liver microsomes were determined. Both the OO and EPO diets, without added cholesterol, increased the contents of oleic and arachidonic acids, respectively, of rat liver microsomes. The results were consistent with the increases in delta 9 and delta 6 desaturation of n-6 essential fatty acids and the lower microviscosity in the EPO group. Dietary cholesterol led to an increase in the cholesterol content of liver microsomes as well as that of phosphatidylcholine (PC). The cholesterol/phospholipid and PC/PE (phosphatidylethanolamine) ratios were also elevated. Fatty acid composition changes were expressed as the accumulation of monounsaturated fatty acids, with accompanying milder depletion of saturated fatty acids in rat liver microsomes. In addition, the arachidonic acid content was lowered, with a concomitant increase in linoleic acid, which led to a significant decrease in the 20:4/18:2 ratio in comparison to in animals fed the cholesterol-free diets. Cholesterol feeding also increased delta 9 desaturase activity as well as membrane microviscosity, whereas it decreased delta 6 and delta 5 desaturase activities. There was a very strong correlation between fluidity and the unsaturation index reduction in the membrane. Furthermore, the activity of hydroxymethylglutaryl-CoA reductase increased and the activity of acyl-CoA:cholesterol acyltransferase decreased in liver microsomes from both cholesterol-fed groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To determine the differenetial effects of docosahexaenoic (DHA) and eicosapentaenoic (EPA) acid on platelet membrane fluidity under hypercholesterolemic conditions. DHA and EPA were orally administered (300 mg/kg body weight.day) to hypercholesterolemic rats for 12 weeks. Membrane fluidity, evaluated by fluorescence polarization of nonpolar 1,6-diphenyl-1,3,5-hexatriene (DPH), of the platelets of high cholesterol (HC; 1%)-fed rats decreased significantly compared with that of the platelets of normocholesterolemic rats. In HC-fed rats, dietary administration of DHA, unlike that of EPA, significantly increased platelet membrane fluidity. A high cholesterol diet significantly increased platelet aggregation, compared with the platelet aggregation of normocholesterolemic rats. DHA administration significantly decreased the aggregation, whereas EPA had no effect. Levels of EPA in the platelets of the EPA-fed HC rats and those of DHA in the platelets of the DHA-fed HC rats increased by 482 and 174%, respectively, compared with those in the platelets of the HC-fed rats. The unsaturation index and the ratio of saturated to (poly)unsaturated fatty acid of the platelet membrane increased only in the DHA-fed rats. The phospholipid content in platelet membranes remained unaltered in all groups, whereas the cholesterol content decreased significantly in DHA-fed rats, resulting in a significant decrease in the cholesterol/phospholipid molar ratio only in the platelet membranes of DHA-fed rats. These results suggest that DHA is a more potent membrane-fluidizer than EPA in withstanding cholesterol-induced decreases in platelet membrane fluidity and a stronger ameliorative modulator of platelet hyperaggregation.  相似文献   

8.
The activities of 5'-nucleotidase (5'-ribonucleoside phosphohydrolase, EC 3.1.3.5); adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4); AMP deaminase (AMP aminohydrolase, EC 3.5.3.6), and ATP-(Mg2+)-ase (ATP phosphohydrolase, EC 3.6.1.3) were assayed in mitochondria of normal and regenerating rat liver 5'-Nucleotidase (5'Nase) and ATP-(Mg2+)-ase activities were compared with similar enzyme activities in the plasma membrane (PM) fraction, obtained from the same biological material. In the regenerating liver, 5'Nase for dTMP diminished its activity by 56% (24 h after partial hepatectomy) and 35 +/- 4% for all substrates in the PM fraction (48 h after operation). In mitochondria, 5'Nase for dTMP manifests sigmoidal substrate activity curve (in contrast with all substrates in the PM fraction and remaining substrates in mitochondria). In vivo 5-azacytidine (a) administered 1 h after partial hepatectomy, prevented changes of 5'Nase activity: (b) administered 24 or 48 h after partial hepatectomy, stabilized low 5'Nase activity (in mitochondria for dTMP, in the PM fraction for all substrates) and decreased ATP-(Mg2+)-ase activity by 51 and 31% in mitochondria and the PM fraction respectively.  相似文献   

9.
The lipid composition and fluidity of microvillus (luminal) membranes isolated from the small intestines of Fisher 344 rats aged 6, 17, and 117 weeks were compared. Lipid fluidity, as assessed by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, was significantly greater in rats aged 6 weeks as compared to 17 or 117 weeks. A lipid thermotropic transition was observed at 17.5 +/- 1.3 degrees C in the membranes of the youngest group, approx. 5-6 degrees C lower than that of the older animals. The differences in lipid composition which account for the higher fluidity of the youngest preparations include a decreased cholesterol/phospholipid molar ratio in both the proximal and distal halves of the small intestine and, in the proximal half alone, increases in the lipid/protein ratio and double bond index. The foregoing reduction in cholesterol/phospholipid ratio derives mainly from a higher content of total phospholipid, and the increment in double bond index results from an increase in arachidonic acid residues. The results demonstrate an age-dependent decrease in fluidity of intestinal microvillus membranes in the early post-weaning period in the rat. This pattern was unlike that of the microvillus membrane p-nitrophenylphosphatase, whose specific activity declined progressively in the older age groups.  相似文献   

10.
The influence of chronic ethanol ingestion on hepatic acyl-CoA: cholesterol acyltransferase activity was investigated to determine the relationship between alcohol intake and cholesterol ester accumulation. Rats were given nutritionally complete liquid diets supplemented with 6.3% ethanol or an isocaloric equivalent of dextrin-maltose for 5 weeks. During this period, the hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed male rats remained constant, whereas the same activity in pair-fed controls as well as chow-fed rats exhibited a 30% decrease in activity. Unlike alcohol-fed male rats, the hepatic acyl-CoA: cholesterol acyltransferase activity of female rats decreased by approximately 30% by the fifth week of ethanol ingestion. Despite the fact that the gender of the animals led to disparate levels of acyl-CoA: cholesterol acyltransferase activity in response to ethanol ingestion, similar levels of cholesteryl ester accumulation were observed. The altered levels of acyl-CoA: cholesterol acyltransferase activity caused no significant change in the cholesterol concentration, cholesterol/phospholipid ratio, phospholipid fatty acid composition, or the membrane fluidity of the hepatic microsomes. We conclude that the altered hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed female rats cannot be directly responsible for ethanol-induced accumulation of cholesteryl esters.  相似文献   

11.
1. The effect of different dietary fat intake on the lipid composition and fluidity of microsomal membranes as well as in the enzymatic activity of the Ca2+-ATPase from chick breast muscle was investigated. 2. When a standard diet was supplemented with 10% sunflower seed oil, an increase in the relative amounts of unsaturated fatty acids and membrane fluidity and a decrease in the cholesterol content was observed. 3. The presence of 6% cholesterol in the diet does not modify the fatty acid composition and the fluidity of the membrane but increased, in a low extension, the cholesterol content. 4. The provision of the sunflower seed oil-rich diet supplemented with cholesterol just 48 hr before death promoted an increase in the relative amounts of unsaturated fatty acids and cholesterol content whereas the membrane fluidity decreased in a significant extent. 5. Despite that dietary lipids gave rise in some cases to changes in lipid composition and in the physical state of the microsomal membrane, neither the Ca2+ uptake capacity nor the ATPase activity were significantly affected.  相似文献   

12.
The lipid composition and fluidity of basolateral membranes prepared from the mucosa of the proximal, middle and distal thirds of the rat small intestine were determined. Fluidity, as assessed by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and a series of anthroyloxy fatty acid derivatives, is decreased in the distal third as compared to the proximal segments. This pattern is similar to that described previously for microvillus membranes. The decrease in fluidity of the distal as compared to the proximal membranes results from an increase in cholesterol content, cholesterol/phospholipid molar ratio and degree of saturation of the fatty acid residues. In the middle and distal thirds of the gut, the degree of saturation of the fatty acid residues is higher in microvillus as compared to basolateral membranes, accounting in part for the characteristically lower fluidity of the luminal membranes. The specific activity of the basolateral membrane (Na+ + K+)-dependent adenosine triphosphatase is significantly lower in the distal as compared to the proximal and middle thirds of the intestinal mucosa. Studies of the binding of [3H]ouabain indicate that this pattern results from fewer enzyme sites in the distal membranes.  相似文献   

13.
In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.  相似文献   

14.
The role of docosahexaenoic acid (DHA) in the fluidity of the annular lipid regions and their associated membrane-bound proteins is still not as well understood as that in the global (bulk) lipid regions. We therefore studied the effects of dietary DHA on the relationship between annular and global lipid fluidity and membrane-bound enzymes such as 5'-nucleotidase and Mg(2)+-ATPase in the rat bile canalicular membrane. Dietary DHA caused significant increases in 5'-nucleotidase and Mg(2)+-ATPase activity and in global and annular lipid fluidity, a higher increase in fluidity in the annular lipids than the global lipids, and a decrease in the cholesterol-to-phospholipid molar ratio in the canalicular membrane. Plasma total cholesterol and LDL cholesterol decreased, and fecal cholesterol increased in the DHA-fed rats. No changes were observed in oxidative markers, but glutathione peroxidase increased in the liver with DHA feeding. Annular lipid fluidity, but not global lipid fluidity, correlated remarkably well with DHA, synchronously with the activities of 5'-nucleotidase and Mg(2)+-ATPase. The data indicate that the DHA-induced increase in annular lipid fluidity is responsible for the increases observed in the enzyme activity. We therefore concluded that the increased activity of membrane-bound enzymes and transporters induced by DHA and the concomitant increase in annular lipid fluidity comprise one of the mechanisms involved in DHA-induced clearance of plasma cholesterol.  相似文献   

15.
The decreased membrane fluidity of the in vivo aged, human erythrocytes is found, by monitoring the electron paramagnetic resonance (EPR) spectra of fatty acid spin labels incorporated into the membrane.In addition, the decreased cell sizes and the decreased cholesterol and phospholipids contents, without significant changes of the quantity of the membrane proteins, also the decrease of ATP and 2,3-diphosphoglycerate and the increase of ADP and AMP, in the aged cells, were observed. Further the functional impairments of the aged cells, i.e. the increased oxygen affinity and the decreased deformability, were shown.On the basis of these quantitative data, the alteration of the protein-lipid organization, due to decreased lipid/protein ratio, the modified protein-lipid interaction and/or the influences of the diminished ATP content, is suggested to contribute towards the decreased membrane fluidity of the in vivo aged erythrocytes.  相似文献   

16.
The decreased membrane fluidity of the in vivo aged, human erythrocytes is found, by monitoring the electron paramagnetic resonance (EPR) spectra of fatty acid spin labels incorporated into the membrane. In addition, the decreased cell sizes and the decreased cholesterol and phospholipids contents, without significant changes of the quantity of the membrane proteins, also the decrease of ATP and 2,3-diphosphoglycerate and the increase of ADP and AMP, in the aged cells, were observed. Further the functional impairments of the aged cells, i.e. the increased oxygen affinity and the decreased deformability, were shown. On the basis of these quantitative data, the alteration of the protein-lipid organization, due to decreased lipid/protein ratio, the modified protein-lipid interaction and/or the influences of the diminished ATP content, is suggested to contribute towards the decreased membrane fluidity of the in vivo aged erythrocytes.  相似文献   

17.
The lipid composition and fluidity of basolateral membranes prepared from the mucosa of the proximal, middle and distal thirds of the rat small intestine were determined. Fluidity, as assessed by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and a series of anthroyloxy fatty acid derivatives, is decreased in the distal third as compared to the proximal segments. This pattern is similar to that described previously for microvillus membranes. The decrease in fluidity of the distal as compared to the proximal membranes results from an increase in cholesterol content, cholesterol/phospholipid molar ratio and degree of saturation of the fatty acid residues. In the middle and distal thirds of the gut, the degree of saturation of the fatty acid residues is higher in microvillus as compared to basolateral membranes, accounting in part for the characteristically lower fluidity of the luminal membranes. The specific activity of the basolateral membrane (Na+ + K+)-dependent adenosine triphosphatase is significantly lower in the distal as compared to the proximal and middle thirds of the intestinal mucosa. Studies of the binding of [3H]ouabain indicate that this pattern results from fewer enzyme sites in the distal membranes.  相似文献   

18.
The purpose of this study was to test the hypothesis that lipid fluidity regulates lecithin:cholesterol acyltransferase (LCAT) activity. Phosphatidylcholine (PC) species were synthesized that varied in fluidity by changing the number, type (cis vs. trans), or position of the double bonds in 18 or 20 carbon sn-2 fatty acyl chains and recombined with [(3)H]cholesterol and apolipoprotein A-I to form recombinant high density lipoprotein (rHDL) substrate particles. The activity of purified human plasma LCAT decreased with PC sn-2 fatty acyl chains containing trans versus cis double bonds and as double bonds were moved towards the methyl terminus of the sn-2 fatty acyl chain. The decrease in LCAT activity was significantly correlated with a decrease in rHDL fluidity (measured by diphenylhexatriene fluorescence polarization) for PC species containing 18 carbon (r(2) = 0.61, n = 18) and 20 carbon (r(2) = 0.93, n = 5) sn-2 fatty acyl chains. rHDL were also made containing 10% of the 18 carbon sn-2 fatty acyl chain PC species and 90% of an inert PC ether matrix (sn-1 18:1, sn-2 16:0 PC ether) to normalize rHDL fluidity. Even though fluidity was similar among the PC ether-containing rHDL, the order of PC reactivity with LCAT was significantly correlated (r(2) = 0.71) with that of 100% PC rHDL containing the same 18 carbon sn-2 fatty acyl chain species, suggesting that PC structure in the active site of LCAT determines reactivity in the absence of measurable differences in bilayer fluidity. We conclude that PC fluidity and structure are major regulators of LCAT activity when fatty acyl chain length is constant.  相似文献   

19.
Lipids are an essential structural and functional component of cellular membranes. Changes in membrane lipid composition are known to affect the activities of many membrane-associated enzymes, endocytosis, exocytosis, membrane fusion and neurotransmitter uptake, and have been implicated in the pathophysiology of many neurodegenerative disorders. In the present study, we investigated changes in the lipid composition of membranes isolated from the cerebral cortex of rats treated with thioacetamide (TAA), a hepatotoxin that induces fulminant hepatic failure (FHF) and thereon hepatic encephalopathy (HE). HE refers to acute neuropsychiatric changes accompanying FHF. The estimation of membrane phospholipids, cholesterol and fatty acid content in cerebral cortex membranes from TAA-treated rats revealed a decrease in cholesterol, phosphatidylserine, sphingomyelin, a monounsaturated fatty acid, namely oleic acid, and the polyunsaturated fatty acids gamma-linolenic acid, decosa hexanoic acid and arachidonic acid compared with controls. Assessment of membrane fluidity with pyrene, 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene revealed a decrease in the annular membrane fluidity, whereas the global fluidity was unaffected. The level of the thiobarbituric acid reactive species marker for lipid peroxidation also increased in membranes from TAA-treated rats, thereby indicating the prevalence of oxidative stress. Results from the present study demonstrate gross alterations in cerebral cortical membrane lipid composition and fluidity during TAA-induced HE, and their possible implications in the pathogenesis of this condition are also discussed.  相似文献   

20.
Endothelial cell (EC) apoptosis is important in vascular injury, repair, and angiogenesis. Homocysteine and/or adenosine exposure of ECs causes apoptosis. Elevated homocysteine or adenosine occurs in disease states such as homocysteinuria and tissue necrosis, respectively. We examined the intracellular signaling mechanisms involved in this pathway of EC apoptosis. Inhibition of protein tyrosine phosphatase (PTPase) attenuated homocysteine- and/or adenosine-induced apoptosis and completely blocked apoptosis induced by the inhibition of S-adenosylhomocysteine hydrolase with MDL-28842. Consistent with this finding, the tyrosine kinase inhibitor genistein enhanced apoptosis in adenosine-treated ECs. Adenosine significantly elevated the PTPase activity in the ECs. Mitogen-activated protein kinase activities were examined to identify possible downstream targets for the upregulated PTPase(s). Extracellular signal-regulated kinase (ERK) 1 activity was slightly elevated in adenosine-treated ECs, whereas ERK2, c-Jun NH(2)-terminal kinase-1, or p38beta activities differed little. The mitogen-activated protein kinase-1 inhibitor PD-98059 enhanced DNA fragmentation, suggesting that increased ERK1 activity is a result but not a cause of apoptosis in adenosine-treated ECs. Adenosine-treated ECs had diminished p38alpha activity compared with control cells; this effect was blunted on PTPase inhibition. These results indicate that PTPase(s) plays an integral role in the induction of EC apoptosis upon exposure to homocysteine and/or adenosine, possibly by the attenuation of p38alpha activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号