首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial complexity and control of a bacterial cell cycle   总被引:3,自引:0,他引:3  
A major breakthrough in understanding the bacterial cell cycle is the discovery that bacteria exhibit a high degree of intracellular organization. Chromosomal loci and many protein complexes are positioned at particular subcellular sites. In this review, we examine recently discovered control mechanisms that make use of dynamically localized protein complexes to orchestrate the Caulobacter crescentus cell cycle. Protein localization, notably of signal transduction proteins, chromosome partition proteins, and proteases, serves to coordinate cell division with chromosome replication and cell differentiation. The developmental fate of daughter cells is decided before completion of cytokinesis, via the early establishment of cell polarity by the distribution of activated signaling proteins, bacterial cytoskeleton, and landmark proteins.  相似文献   

2.
In unicellular and multicellular organisms, cell polarity is essential for a wide range of biological processes. An important feature of cell polarity is the asymmetric distribution of proteins in or at the plasma membrane. In plants such polar localized proteins play various specific roles ranging from organizing cell morphogenesis, asymmetric cell division, pathogen defense, nutrient transport and establishment of hormone gradients for developmental patterning. Moreover, flexible respecification of cell polarities enables plants to adjust their physiology and development to environmental changes. Having evolved multicellularity independently and lacking major cell polarity mechanisms of animal cells, plants came up with alternative solutions to generate and respecify cell polarity as well as to regulate polar domains at the plasma membrane.  相似文献   

3.
Exploration into the spatial and temporal mechanisms of bacterial polarity   总被引:1,自引:0,他引:1  
The recognition of bacterial asymmetry is not new: the first high-resolution microscopy studies revealed that bacteria come in a multitude of shapes and sometimes carry asymmetrically localized external structures such as flagella on the cell surface. Even so, the idea that bacteria could have an inherent overall polarity, which affects not only their outer appearance but also many of their vital processes, has only recently been appreciated. In this review, we focus on recent advances in our understanding of the molecular mechanisms underlying the establishment of polarized functions and cell polarity in bacteria.  相似文献   

4.
Cellular polarity is a fundamental property of every cell. Due to their extremely fast growth rate (>/=1 microm/s) and their highly elongated form, filamentous fungi represent a prime example of polarized growth and are an attractive model for the analysis of fundamental mechanisms underlying cellular polarity. To identify the critical components that contribute to polarized growth, we developed a large-scale genetic screen for the isolation of conditional mutants defective in this process in the model fungus Neurospora crassa. Phenotypic analysis and complementation tests of ca. 950 mutants identified more than 100 complementation groups that define 21 distinct morphological classes. The phenotypes include polarity defects over the whole hypha, more specific defects localized to hyphal tips or subapical regions, and defects in branch formation and growth directionality. To begin converting this mutant collection into meaningful biological information, we identified the defective genes in 45 mutants covering all phenotypic classes. These genes encode novel proteins as well as proteins which 1) regulate the actin or microtubule cytoskeleton, 2) are kinases or components of signal transduction pathways, 3) are part of the secretory pathway, or 4) have functions in cell wall formation or membrane biosynthesis. These findings highlight the dynamic nature of a fungal hypha and establish a molecular model for studies of hyphal growth and polarity.  相似文献   

5.
6.
Proteins can be localized either by inclusion or exclusion, and the Par polarity proteins illustrate both mechanisms. Cdc42 recruits Par-6 to a limited region of the plasma membrane. Par-6 recruits Par-3, which is actively removed from other regions by Par-1 and Par-5. Inclusion and exclusion together ensure efficient segregation of the polarity proteins.  相似文献   

7.
Cis-acting determinants of asymmetric, cytoplasmic RNA transport   总被引:1,自引:0,他引:1       下载免费PDF全文
Asymmetric subcellular distribution of RNA is used by many organisms to establish cell polarity, differences in cell fate, or to sequester protein activity. Accurate localization of RNA requires specific sequence and/or structural elements in the localized RNA, as well as proteins that recognize these elements and link the RNA to the appropriate molecular motors. Recent advances in biochemistry, molecular biology, and cell imaging have enabled the identification of many RNA localization elements, or "zipcodes," from a variety of systems. This review focuses on the mechanisms by which various zipcodes direct RNA transport and on the known sequence/structural requirements for their recognition by transport complexes. Computational and experimental methods for predicting and identifying zipcodes are also discussed.  相似文献   

8.
The mouse germinal vesicle (GV)-intact oocyte is a symmetric cell, with the GV centrally localized and with components of the plasma membrane and cortex symmetrically distributed around the periphery of the oocyte. During oocyte maturation, two distinct regions of the egg plasma membrane and cortex develop: the amicrovillar region overlying the meiotic spindle and the microvillar region. The development of this polarity is significant, since sperm bind to and fuse with the microvillar region. We are interested in the development of egg polarity and have characterized the localizations of several markers for egg polarity in normal metaphase II eggs and GV-intact oocytes. The asymmetric distributions of these markers (including actin, cortical granules, binding sites for the sperm proteins fertilin alpha and fertilin beta, and two different beta(1) integrin epitopes) develop during oocyte maturation in vitro, and this polarity can be perturbed by treatments that disrupt the actin microfilaments or microtubules. In addition, immunoelectron microscopy reveals that binding sites for recombinant fertilin beta are specifically localized to the microvillar region, suggesting that the binding sites for this sperm ligand are either specifically localized or activated in this region. These results indicate that structural remodeling of the mouse egg plasma membrane is accompanied by molecular remodeling, resulting in the localization or activation of specific molecules in subdomains of the plasma membrane.  相似文献   

9.
Li R  Wai SC 《Trends in cell biology》2004,14(10):532-536
The actin cytoskeleton is important for cell polarity and morphogenesis in eukaryotic organisms. A recent article describes an unexpected requirement for the actin-like protein MreB in the polarization of the bacterium Caulobacter crescentus. More surprisingly, the formation of a filamentous MreB structure that traverses the length of the cell is sufficient for randomized polar localization of cell-fate proteins. In this article, we discuss the significance of these findings and the possible mechanisms by which an actin-like cytoskeleton could mediate cell polarity in bacteria.  相似文献   

10.
11.
Nuclear RNP complex assembly initiates cytoplasmic RNA localization   总被引:1,自引:0,他引:1  
Cytoplasmic localization of mRNAs is a widespread mechanism for generating cell polarity and can provide the basis for patterning during embryonic development. A prominent example of this is localization of maternal mRNAs in Xenopus oocytes, a process requiring recognition of essential RNA sequences by protein components of the localization machinery. However, it is not yet clear how and when such protein factors associate with localized RNAs to carry out RNA transport. To trace the RNA-protein interactions that mediate RNA localization, we analyzed RNP complexes from the nucleus and cytoplasm. We find that an early step in the localization pathway is recognition of localized RNAs by specific RNA-binding proteins in the nucleus. After transport into the cytoplasm, the RNP complex is remodeled and additional transport factors are recruited. These results suggest that cytoplasmic RNA localization initiates in the nucleus and that binding of specific RNA-binding proteins in the nucleus may act to target RNAs to their appropriate destinations in the cytoplasm.  相似文献   

12.
Actomyosin contraction generates mechanical forces that influence cell and tissue structure. During convergent extension in Drosophila melanogaster, the spatially regulated activity of the myosin activator Rho-kinase promotes actomyosin contraction at specific planar cell boundaries to produce polarized cell rearrangement. The mechanisms that direct localized Rho-kinase activity are not well understood. We show that Rho GTPase recruits Rho-kinase to adherens junctions and is required for Rho-kinase planar polarity. Shroom, an asymmetrically localized actin- and Rho-kinase–binding protein, amplifies Rho-kinase and myosin II planar polarity and junctional localization downstream of Rho signaling. In Shroom mutants, Rho-kinase and myosin II achieve reduced levels of planar polarity, resulting in decreased junctional tension, a disruption of multicellular rosette formation, and defective convergent extension. These results indicate that Rho GTPase activity is required to establish a planar polarized actomyosin network, and the Shroom actin-binding protein enhances myosin contractility locally to generate robust mechanical forces during axis elongation.  相似文献   

13.
Although plant and animal cells use a similar core mechanism to deliver proteins to the plasma membrane, their different lifestyle, body organization and specific cell structures resulted in the acquisition of regulatory mechanisms that vary in the two kingdoms. In particular, cell polarity regulators do not seem to be conserved, because genes encoding key components are absent in plant genomes. In plants, the broad knowledge on polarity derives from the study of auxin transporters, the PIN-FORMED proteins, in the model plant Arabidopsis thaliana. In animals, much information is provided from the study of polarity in epithelial cells that exhibit basolateral and luminal apical polarities, separated by tight junctions. In this review, we summarize the similarities and differences of the polarization mechanisms between plants and animals and survey the main genetic approaches that have been used to characterize new genes involved in polarity establishment in plants, including the frequently used forward and reverse genetics screens as well as a novel chemical genetics approach that is expected to overcome the limitation of classical genetics methods.  相似文献   

14.
The tumor suppressor lethal giant larvae (Lgl) plays a critical role in epithelial cell polarization. However, the molecular mechanism by which Lgl carries out its functions is unclear. In this study, we report that the yeast Lgl proteins Sro7p and Sro77p directly interact with Exo84p, which is a component of the exocyst complex that is essential for targeting vesicles to specific sites of the plasma membrane for exocytosis, and that this interaction is important for post-Golgi secretion. Genetic analyses demonstrate a molecular pathway from Rab and Rho GTPases through the exocyst and Lgl to SNAREs, which mediate membrane fusion. We also found that overexpression of Lgl and t-SNARE proteins not only improves exocytosis but also rescues polarity defects in exocyst mutants. We propose that, although Lgl is broadly distributed in the cells, its localized interaction with the exocyst and kinetic activation are important for the establishment and reenforcement of cell polarity.  相似文献   

15.
Chemotaxis is the process by which cells sense changes in their chemical environment and move towards more favorable conditions. In divergent species of bacteria, the chemotaxis proteins localize to the poles of the cell and information is transferred to the flagellar motors through the phosphorylation of a soluble protein CheY. Using mathematical models and computer simulation, we demonstrate that phosphatase localization controls the spatial distribution of CheY-P in the cytosol at steady state. Remarkably, the location of the phosphatase is not conserved in different species of bacteria. The sole phosphatase in Escherichia coli is localized with the signaling complex and the primary phosphatase in Bacillus subtilis is localized at the flagellar motors. Despite these alternate pathway structures, both designs minimize differences in the concentration of phosphorylated CheY proximal to each motor unlike a design where the phosphatase is freely diffusing in the cytoplasm. These results suggest that motile bacteria have evolved alternate mechanisms to ensure that each motor receives roughly the same signal at steady state. The hypothesis is that complex networks have evolved to satisfy certain design principles in order to function robustly. While specific mechanisms are different, the underlying principles of phosphatase localization in E. coli and B. subtilis appear to be the same.  相似文献   

16.
Bacterial adherence to and invasion of eukaryotic cells are important mechanisms of pathogenicity. Most Gram-positive bacteria interact with the components of the host extracellular matrix (ECM) to adhere to, colonize and invade cells and tissues. The bacterial proteins that bind to components of the ECM harbour signal sequences for their secretion and mechanisms of anchoring to the host cell surface. However, in recent years, some cell-surface adhesins and invasins of Gram-positive bacteria have been described that do not possess a signal sequence or a membrane anchor. These proteins are secreted by an as-yet-unknown mechanism and are probably localized on the bacterial surface by reassociation. These anchorless but surface-located adhesins and invasins represent a new class of virulence factors.  相似文献   

17.
Adler PN  Zhu C  Stone D 《Current biology : CB》2004,14(22):2046-2051
Planar polarity development in the Drosophila wing is under the control of the frizzled (fz) pathway. Recent work has established that the planar polarity (PP) proteins become localized to either the distal, proximal, or both sides of wing cells. Fz and Dsh distal accumulation is thought to locally activate the cytoskeleton to form a hair . Planar polarity effector (PPE) genes such as inturned (in) are not required for the asymmetric accumulation of PP proteins, but they are required for this to influence hair polarity. in mutations result in abnormal hair polarity and are epistatic to mutations in the PP genes. We report that In localizes to the proximal side of wing cells in a PP-dependent and PP-instructive manner. We further show that the function of two other PPE genes (fuzzy and fritz) is essential for In protein localization, a finding consistent with previous genetic data that suggested these three genes function in a common process. These data indicate that accumulation of proteins at the proximal side of wing cells is a key event for the distal activation of the cytoskeleton to form a hair.  相似文献   

18.
In all organisms, cell polarity is fundamental for most aspects of cell physiology. In many species and cell types, it is controlled by the evolutionarily conserved PAR-3, PAR-6 and aPKC proteins, which are asymmetrically localized at the cell cortex where they define specific domains. While PAR proteins define the antero-posterior axis of the early C. elegans embryo, the mechanism controlling their asymmetric localization is not fully understood. Here we studied the role of endocytic regulators in embryonic polarization and asymmetric division. We found that depleting the early endosome regulator RAB-5 results in polarity-related phenotypes in the early embryo. Using Total Internal Reflection Fluorescence (TIRF) microscopy, we observed that PAR-6 is localized at the cell cortex in highly dynamic puncta and depleting RAB-5 decreased PAR-6 cortical dynamics during the polarity maintenance phase. Depletion of RAB-5 also increased PAR-6 association with clathrin heavy chain (CHC-1) and this increase depended on the presence of the GTPase dynamin, an upstream regulator of endocytosis. Interestingly, further analysis indicated that loss of RAB-5 leads to a disorganization of the actin cytoskeleton and that this occurs independently of dynamin activity. Our results indicate that RAB-5 promotes C. elegans embryonic polarity in both dynamin-dependent and -independent manners, by controlling PAR-6 localization and cortical dynamics through the regulation of its association with the cell cortex and the organization of the actin cytoskeleton.  相似文献   

19.
Cell polarity is one of the most basic properties of all normal cells and is essential for regulating numerous biological processes. Loss of polarity is considered a hallmark for cancer. Multiple polarity proteins are implicated in maintenance of cell polarity. Lethal (2) giant larvae (Lgl) is one of polarity proteins that plays an important role in regulating cell polarity, asymmetric division as well as tumorigenesis. Lgl proteins in different species have similar structures and conserved functions. Lgl acts as an indispensable regulator of cell biological function, including cell polarity and asymmetric division, through interplaying with other polarity proteins, regulating exocytosis, mediating cytoskeleton and being involved in signaling pathways. Furthermore, Lgl plays a role of a tumor suppressor, and the aberrant expression of Hugl, a human homologue of Lgl, contributes to multiple cancers. However, the exact functions of Lgl and the underlying mechanisms remain enigmatic. In this review, we will give an overview of the Lgl functions in cell polarity and cancer development, discuss the potential mechanisms underlying these functions, and raise our conclusion of previous studies and points of view about the future studies.  相似文献   

20.
Many recent studies have revealed exquisite subcellular localization of proteins, DNA, and other molecules within bacterial cells, giving credence to the concept of prokaryotic anatomy. Common sites for localized components are the poles of rod-shaped cells, which are dynamically modified in composition and function in order to control cellular physiology. An impressively diverse array of mechanisms underlies bacterial polarity, including oscillatory systems, phospho-signaling pathways, the sensing of membrane curvature, and the integration of cell cycle regulators with polar maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号