首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. R. Ricketts  P. A. Edge 《Planta》1977,134(2):169-176
A rapid uptake of nitrogen was observed in nitrogen-starved cells of Platymonas striata after refeeding with ammonium or nitrate ions. This was followed by a net loss of nitrogen per cell. Cells initially grown in and then starved in a regime of continuous light showed greater increases in average cell nitrogen on refeeding with ammonium or nitrate ions than did cells initially grown in and then starved in a regime of alternating light and darkness. A particulate subcellular location was observed for nitrate reductase (EC 1.6.6.1) in broken cell suspensions prepared by sonication. Nitrite reductase (EC 1.6.6.4) was located in the soluble fraction of these cell suspensions. Broken cell preparations displayed a lowered nitrate reductase activity as compared with the particulate component of these preparations. This was shown not to be due to heat-stable inhibitors present in the soluble phase of the cell. It appeared to be an artefact produced by the high nitrite reductase activity of the broken cell preparations, which removed much of the nitrite as it was formed. Nitrogen starvation of nitrate-grown cultures produced cellular increases in nitrate reductase and nitrite reductase activities which were further increased after the addition of nitrate. The results are discussed.Abbreviations ASP2 complete culture medium - ASP2 INF medium lacking in inorganic nitrogen - ASP2 NF medium lacking all nitrogen - NAR nitrate reductase - NIR nitrite reductase - EDTA Ethylenediaminetetracetic acid - PVP Polyvinylpyrollidone, M.W. 44,000  相似文献   

2.
Daily changes of inorganic carbon and nitrogen uptake were measured in May in 1986 in Lake Nakanuma, Japan. Uptake of inorganic carbon and ammonium in the light-bottle experiments in the 1 m layers, showed daily changes similar to chlorophyll a changes, though the uptake activities peaked before chlorophyll a peaks (phytoplankton blooms) appeared. Potential growth rates of phytoplankton and observed growth rates were calculated from the uptake rates and chlorophyll a changes. The potential growth rates did not always correspond to the observed growth rates. The potential growth rates did not correlate with the loss rates. The correlation between the observed growth rates and the loss rates was better. These results suggest that though the increase of uptake activities may be necessary for occurrence of phytoplankton blooms, loss processes may affect the occurrence of blooms.  相似文献   

3.
Renal brush-border membrane vesicles from rat kidney cortex were irradiated in frozen state with a gamma-radiation source. Initial rates of influx into these vesicles were estimated for substrates such as L-glutamic acid, L-alanine, L-proline and L-leucine to establish the molecular sizes of their carriers. Transport was measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Initial rates of Na(+)-independent uptakes for those four substrates appeared unaffected in the dose range used (0-6 Mrad), indicating that the passive permeability of the membrane towards these substrates was unaffected. However, at higher doses of irradiation the Na+ influx and the intravesicular volume evaluated by the uptake of glucose at equilibrium were altered by radiation. Thus Na(+)-dependent influx values were corrected for volume changes, and the corrected values were used to compute radiation-inactivation sizes of the transport systems. Their respective values for L-glutamic acid, L-proline, L-leucine and L-alanine carriers were 250, 224, 293 and 274 kDa. The presence of the free-radicals scavenger benzoic acid in the frozen samples during irradiation did not affect the uptake of glucose, phosphate and alkaline phosphatase activity. These results indicate that freezing samples in a cryoprotective medium was enough to prevent secondary inactivation of transporters by free radicals. Uptakes of beta-alanine and L-lysine were much less affected by radiation. The radiation-inactivation size of the Na(+)-dependent beta-alanine carrier was 127 kDa and that of the L-lysine carrier was 90 kDa.  相似文献   

4.
Inducible nitric oxide (NO) synthase (iNOS) is a stress response protein upregulated in inflammatory conditions, and NO may suppress cellular proliferation. We hypothesized that preventing L-arginine (L-arg) uptake in endothelial cells would prevent lipopolysaccharide/tumor necrosis factor-α (LPS/TNF)-induced, NO-mediated suppression of cellular proliferation. Bovine pulmonary arterial endothelial cells (bPAEC) were treated with LPS/TNF or vehicle (control), and either 10 mM L-leucine [L-leu; a competitive inhibitor of L-arg uptake by the cationic amino acid transporter (CAT)] or its vehicle. In parallel experiments, iNOS or arginase II were overexpressed in bPAEC using an adenoviral vector (AdiNOS or AdArgII, respectively). LPS/TNF treatment increased the expression of iNOS, arginase II, CAT-1, and CAT-2 mRNA in bPAEC, resulting in greater NO and urea production than in control bPAEC, which was prevented by L-leu. LPS/TNF treatment resulted in fewer viable cells than in controls, and LPS/TNF-stimulated bPAEC treated with L-leu had more viable cells than LPS/TNF treatment alone. LPS/TNF treatment resulted in cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase expression, which was attenuated by L-leu. AdiNOS reduced viable cell number, and treatment of AdiNOS transfected bPAEC with L-leu preserved cell number. AdArgII increased viable cell number, and treatment of AdArgII transfected bPAEC with L-leu prevented the increase in cell number. These data demonstrate that iNOS expression in pulmonary endothelial cells leads to decreased cellular proliferation, which can be attenuated by preventing cellular L-arg uptake. We speculate that CAT activity may represent a novel therapeutic target in inflammatory lung diseases characterized by NO overproduction.  相似文献   

5.
Glucose uptake by whole-cell suspension of the facultative anaerobe Cellulomonas fimi, which was two-fold higher under aerobic conditions than under N2 or H2, was inhibited by inhibitors of electron transport and ATP synthesis and, particularly, by proton and metal ion ionophores. A variety of sugars, including 2-deoxyglucose, did not inhibit glucose uptake but cellobiose was a non-competitive inhibitor. Cells grown on cellobiose medium transported glucose at one half the rate of glucose-grown cells. Cellulomonas fimi has a highly specific active system for glucose transport.  相似文献   

6.
Kjeldahl assays showed that the pod wall of Vicia faba fruits behaves as a transitory reservoir of nitrogen. We have studied the properties and energetics of amino-acid uptake during the accumulating stage of pod wall development. A comparative analysis using various inhibitors or activators of the proton pump has been carried out i) on threonine uptake, ii) on the acidifying activity of the tissues, and iii) on the transmembrane potential difference of mesocarp cells. Except for the effect of dicyclohexylcarbodiimide which could not be satisfactorily explained, all other results obtained with ATPase inhibitors, uncouplers and fusicoccin were consistent with the view of a transport energized by the proton-motive force. Adding threonine to a medium containing fragments of pericarp or of endocarp induced a pH change (to-wards more alkaline values) of the medium and a membrane depolarization of the storage cells which depended on the amino-acid concentration added. These data indicate H+-threonine cotransport in the pod wall of broad bean. Moreover, because p-chloromercuribenzenesulphonic acid inhibits threonine uptake without affecting the transmembrane potential difference, it is concluded that the threonine carrier possesses a functional SH-group located at the external side of the plasmalemma.Abbreviations CCCP carbonylcyanide- m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - DNP 2,4-dinitrophenol - FC fusicoccin - PCMBS p-chloromercuribenzenesulphonic acid - PD potential difference  相似文献   

7.
Biddulphia aurita, a centric diatom, can grow on either nitrate, nitrite, or ammonia as its sole nitrogen, source. Cells remove ammonium nitrogen from the medium 2.3–2.4 times faster than either nitrate or nitrite nitrogen and, when grown for 24 hr in the ammonium medium, contain higher levels of non-protein nitrogen than cells grown in the nitrate or nitrite medium for the same period of time. The nitrogenous compounds in the nonprotein nitrogen fraction from cells grown in the nitrate, nitrite, or ammonium medium contain the same level of soluble-free amino nitrogen, combined amino nitrogen, and ammonium nitrogen. The high level of soluble nonprotein nitrogen in the medium of the cells grown in the ammonium medium is due to soluble amide nitrogen which represents 18% of the total soluble nitrogen present in these cells, whereas it represents only 2% in cells from the nitrite medium, and its level is negligible in cells from the nitrate medium. Cells grown in the nitrate medium have both nitrate- and nitrite-reductase activity. Cells grown in the nitrite medium have only nitrite-reductase activity in significant levels, while cells grown in the ammonium medium lack both enzymes.  相似文献   

8.
The concentration of both nitrate and ammonium nitrogen was measured in soil taken from an upland acidic (pH 4.5) grassland habitat, containing four co-existing species, Deschampsia flexuosa (L.) Trin., Festuca ovina L., Juncus squarrosus L. and Nardus stricta L. Both nitrate and ammonium nitrogen were found to be present in the soil, in similarly small quantities. The effect of both sources of nitrogen on relative growth rate was studied, and an attempt was made to determine whether nitrate or ammonium nitrogen is the immediate source of nitrogen for these plants using assays of nitrate reductase (EC 1.6.6.2) and ammonium uptake. All four species showed larger growth rates on the same concentration of ammonium nitrogen compared to nitrate nitrogen. All species showed low activities of leaf nitrate reductase, even in plants grown on 18 mol nitrate m−3. Ammonium uptake activity appeared to be higher in species which showed the lowest nitrate reductase activity and least response to increasing nitrate concentration in the growth medium.  相似文献   

9.
Salinity and drought induce osmotic stress in plants and nodulating bacteria. The introduction of soybean in areas with higher soil salt contents or periods of drought pose a challenge for the rhizobial inoculants used to improve nodulation and enhance nitrogen fixation. Bradyrhizobium japonicum is a slow-growing rhizobium used for soybean inoculation that was previously regarded as salt-sensitive. We tested the survival ability of cultures of B. japonicum E109 at the exponential and stationary phases of growth in liquid culture medium against different concentrations of NaCl. We found that stationary-phase cells could tolerate higher levels of salt than exponential-phase cells. This result suggested that the physiological manipulation of the cultures could improve the salt tolerance of this strain. Nonetheless, we also found that exponential-phase cells adapted significantly better to two key situations that a commercial product must face, survival in liquid formulations and survival in soil microcosms resembling conditions of drought. These results suggest that the use of actively growing cells could be an improvement in the production of inoculants. However, it is not cost-effective, because bacteria should be harvested at a time when cell density is lower than that of early stationary-phase cultures, which are normally used in the industry. To overcome this drawback we proved that a fed-batch system can produce exponential-phase cultures with higher cell densities and able to produce liquid inoculants with acceptable survival rates.  相似文献   

10.
Abstract Thermoanaerobacter thermohydrosulfuricus Rt8.B1 catabolized xylose by the pentose phosphate pathway, and xylose isomerase and xylulokinase were inducible. The uptake of xylose was by two low-affinity, inducible systems. Both systems were resistant to the protonophore, tetrachlorosalicylanilide, the F1F0-ATPase inhibitor, N , N -dicyclohexylcarboiimide, and the sodium/proton antiporter, monensin. The high capacity system (100 nmol min−1 (mg protein)−1) was only expressed when the bacterium was grown with a high concentration of xylose (50 mM). It took more than 60 mM xylose to saturate the high capacity system. When T. thermohydrosulfuricus was grown with a low concentration of xylose (5 mM), xylose uptake was saturated by as little as 10 mM xylose (18 nmol min−1 (mg protein)−1). Cells grown with 50 mM xylose could not transport glucose, and high capacity xylose transport was not inhibited by glucose or non-metabolizable glucose analogues. Cells grown with 5 mM xylose transported glucose at a rapid rate (30 nmol min−1 (mg protein)−1), and low capacity xylose uptake was competitively inhibited by either glucose or 2-deoxy-glucose. Because the glucose uptake of cells grown on 5 mM xylose was competitively inhibited by xylose, it appeared that the low capacity xylose uptake system was a glucose/xylose carrier.  相似文献   

11.
Dissociated neonatal rat cerebellar cells were grown on medium supplemented with 10% horse serum (HS) and compared with those grown using a serum-free supplemented (SFS) medium, modified from Bottenstein and Sato (1979). containing insulin, transferrin, progesterone, putrescine, and selenium (after an initial 24 hr in 10% horse serum). Cells survived for several weeks using either medium. Cells grown in SFS had higher levels of GABA uptake than cells grown in HS. Cellular morphology and the proportion of neurons to glial cells were similar under the two conditions. Transferrin concentrations of 0.5, 10, and 100 µg/ml were tested. Neither neuronal nor glial cells were sensitive to this 200-fold variation. The SFS medium supports survival and maturation of both neurons and glial cells from rat cerebellum. However, the medium is not completely defined since (1) one day of serum is still required and (2) the heterogeneous cell population is undoubtedly conditioning the medium to some extent.This work was supported in part by grants from the Scottish Rite Schizophrenia Research Program, N.M.J., USA, and by Biomedical Research Grant S 07-RR5394, from the National Institutes of Health, PHS/DHHS.  相似文献   

12.
The transport of α-methyl-D-glucoside and two aminoacids, L-phenylalanine and L-leucine by a temperature sensitive fatty acid requiring mutant ofSalmonella typhimurium was studied under conditions of supplementation withcis or trans-unsaturated fatty acids. The results of such experiments definitely establish a relationship between the fatty acids composition of the membrane and the transport property of the cells. Cells grown in the presence of trans-unsaturated fatty acids cannot transport so efficiently as compared to the cis-unsaturated fatty acid-grown cells except linolelaidic acid, atrans-trans-unsaturated fatty acid. Protein: phospholipid ratio of the membrane also varies significantly under such conditions. The affinity of L-phenylalanine transport carrier for the substrate changes remarkably in cells grown in the presence of differentcis or trans-unsaturated fatty acids and indicate the possible role of membrane lipids in membrane assembly as well as regulation of the activity of L-phenylalanine transport system.  相似文献   

13.
Late log-phase Escherichia coli B/r cells are 1.6 times more sensitive to killing by X rays than are stationary-phase cells when grown in Brain Heart Infusion (BHI) + glucose. The number of single-chain breaks formed per krad is the same for log- and stationary-phase cells. Stationary-phase cells show a somewhat greater ability to repair single-chain breaks (especially after high doses of X rays) than do log-phase cells. The rapidity and extent of postirradiation deoxyribonucleic acid (DNA) degradation are greater in log-phase cells than in stationary-phase cells. The enhanced viability exhibited by stationary-phase cells thus appears to correlate both with enhanced single-chain break repair and the reduced degradation of DNA. Cells grown to stationary phase in peptone medium (PO cells) are 3.4 times more sensitive to killing by X rays than cells grown to stationary phase in peptone medium supplemented with glucose and phosphate buffer (PG cells). The yield of single-strand breaks is the same for both types of cells (but the absolute yield is about two times higher than in the cells grown in BHI + glucose). The kinetics for the repair of single-chain breaks are the same for both types of cells for about 30 min. After this time period, further repair ceases in the PO cells but continues in the PG cells, provided that glucose is present in the medium. Postirradiation DNA degradation is both more rapid and more extensive in PO cells than in PG cells whether or not glucose is present in the postirradiation incubation medium. The survival of stationary-phase E. coli B/r grown in PO or PG medium is likewise unaffected by the presence of glucose in the plating medium, and thus correlates better with the lower DNA degradation seen in the PG cells than with the increased strand rejoining, since this latter process requires the presence of glucose.  相似文献   

14.
The kinetics of the uptake of [3H]gibberellin A1 (GA1) by light- and dark-grown suspension-cultured cells of Spinacia oleracea (spinach) have been studied. Use of nonradioactive GA1 and gibberellic acid (GA3) show that the uptake has a saturable and a nonsaturable component. The nonsaturable component increases as the pH is lowered at a fixed concentration of [3H]GA1 and is probably caused by non-mediated diffusion of the uncharged protonated species of GA1. The saturable component is not the result of metabolic transformation or to GA1 binding to the cell wall and is suggested to represent the operation of a transport carrier for which GA1 and GA3 are substrates. Auxin, abscisic acid and a cytokinin did not alter the GA1 uptake. The Km is approx. 0.3 mol dm-3 at pH 4.4 in light- and dark-grown cells. The Vmax of the carrier is higher in the light-grown cells. The optimum pH for the carrier at a physiological GA1 concentration (3 nmol dm-3) was pH 4.0, with no activity detectable at pH 7.0. Both saturable and nonsaturable components were decreased by protonophores indicating that the pH gradient between the cells and the medium may be a component of the driving forces for both types of transport. Both the permeability coefficient for the undissociated GA1 and the ratio V max/K m for the carrier are lower than the corresponding values for the indole-3-acetic acid and abscisic acid carriers studied in other species.Abbreviations and symbols ABA abscisic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - GA gibberellin - GA3 gibberellic acid - IAA indole-3-acetic acid - P permeability coefficient  相似文献   

15.
When grown in fructose or glucose the cells of Zygosaccharomyces bailii were physiologically different. Only the glucose grown cells (glucose cells) possessed an additional transport system for glucose and malate. Experiments with transport mutants had lead to the assumption that malate and glucose were transported by one carrier, but further experiments proved the existence of two separate carrier systems. Glucose was taken up by carriers with high and low affinity. Malate was only transported by an uptake system and it was not liberated by starved malate-loaded cells, probably due to the low affinity of the intracellular anion to the carrier. The uptake of malate was inhibited by fructose, glucose, mannose, and 2-DOG but not by non metabolisable analogues of glucose. The interference of malate transport by glucose, mannose or 2-DOG was prevented by 2,4-dinitrophenol, probably by inhibiting the sugar phosphorylation by hexokinase. Preincubation of glucose-cells with metabolisable hexoses promoted the subsequent malate transport in a sugar free environment. Preincubation of glucose-cells with 2-DOG, but not with 2-DOG/2,4-DNP, decreased the subsequent malate transport. The existence of two separate transport systems for glucose and malate was demonstrated with specific inhibitors: malate transport was inhibited by sodium fluoride and glucose transport by uranylnitrate. A model has been discussed that might explain the interference of hexoses with malate uptake in Z. bailii.Abbreviations 2,4-DNP 2,4-dinitrophenol - 2-DOG 2-deoxyglucose - 6-DOG 6-deoxyglucose - pCMB para-hydroxymercuribenzoate  相似文献   

16.
The uptake of the radioactive ammoniumanalogue 14C-methylammonium1 was measured in heterotrophically grown cells of Alcaligenes eutrophus H16 in order to study the mechanism of NH 4 + uptake. MA gradients of up to 200 were built up by a substrate-specific and energy-dependent system which showed a K m of 35–111 M and a V max of 0.4–1.8 nmol MA/min per mg protein. The involved carrier exhibited a higher affinity towards NH 4 + than towards CH3NH 3 + indicating that ammonium rather than MA was its natural substrate. Cold shock with hypotonic but not with hypertonic solutions caused the efflux of almost the entire accumulated MA. Osmotic shock did not affect the uptake reaction, suggesting that no periplasmic binding proteins were involved. Indirect observations indicate the membrane potential as driving force for MA uptake. High rates of uptake were observed in cells grown under nitrogen deficiency or with nitrate as nitrogen source. The uptake rate decreased during growth at high ammonium concentrations indicating that biosynthesis of nitrogenous compounds was supported by passive diffusion of NH3. The data suggest that the formation of the carrier is subject to nitrogen control.Non-standard abbreviations CCCP Carbonylcyanide-m-chlorphe-nylhydazone - MA methylammonium - pCMB para-chlormercuribenzoate  相似文献   

17.
Observations of near-bottom populations of Karenia brevis suggest that these cells may derive nutrients from the sediment–water interface. Cells undergoing a metabolic-mediated migration may be in close proximity to enhanced concentrations of nutrients associated with the sediment during at least a fraction of their diel cycle. In this study, the growth, uptake and assimilation rates of ammonium, nitrate, and urea by K. brevis were examined on a diel basis to better understand the potential role of these nutrients in the near-bottom ecology of this species. Three strains of K. brevis, C6, C3, and CCMP 2229, were grown under 12:12 light dark cycle under 30 μmol photons m−2 s−1 delivered to the surface plain of batch cultures. Nitrogen uptake was evaluated using 15N tracer techniques and trichloroacetic acid extraction was used to evaluate the quantity of nitrogen (N) assimilated into cell protein. Growth rates ranged from a low of 0.12 divisions day−1 for C6 and C3 grown on nitrate to a high of 0.18 divisions day−1 for C3 grown on urea. Diurnal maximum uptake rates, ρmax, varied from 0.41 pmol-N cell−1 h−1 for CCMP 2229 grown on nitrate, to 1.29 pmol-N cell−1 h−1 for CCMP 2229 grown on urea. Average nocturnal uptake rates were 29% of diurnal rates for nitrate, 103% of diurnal uptake rates for ammonium and 56% of diurnal uptake rates for urea. Uptake kinetic parameters varied between substrates, between strains and between day and night measurements. Highest maximum uptake rates were found for urea for strains CCMP2229 and C3 and for ammonium for strain C6. Rates of asmilation into protein also varied day and night, but overall were highest for urea. The comparison of maximal uptake rates as well as assimilation efficiencies indicate that ammonium and urea are utilized (taken up and assimilated) more than twice was fast as nitrate on a diel basis.  相似文献   

18.
Although activation of A-type cyclin-dependent kinase (CDKA) is required for plant cell division, little is known about how CDKA is activated before commitment to cell division. Here, we show that auxin is required for the formation of active CDKA-associated complexes, promoting assembly of the complex in tobacco suspension culture Bright Yellow-2 (BY-2) cells. Protein gel blot analysis revealed that CDKA levels increased greatly after stationary-phase BY-2 cells were subcultured into fresh medium to re-enter the cell cycle. However, these increasing levels subsided when cells were subcultured into auxin-deprived medium, and a subtle increase was observed after subculturing into sucrose-deprived medium. Additionally, p13(suc1)-associated kinase activity did not increase significantly after subculturing into either auxin- or sucrose-deprived medium, but increased strongly after subculturing into medium containing both auxin and sucrose. Using gel filtration, we found that p13(suc1)-associated kinase activity against tobacco retinoblastoma-related protein was maximal in fractions corresponding to the molecular mass of the cyclin/CDKA complex. Interestingly, this peak distribution of high molecular-mass fractions of CDKA disappeared after cells were subcultured into auxin-deprived medium. These findings suggest an important role for auxin in the assembly of active CDKA-associated complexes.  相似文献   

19.
The nitrate reductase activity (NR) of selected uptake hydrogenase-positive (hup +) and uptake hydrogenase-negative (hup -) strains of Bradyrhizobium japonicum were examined both in free-living cells and in symbioses with Glycine max L. (Marr.) cv. Williams. Bacteria were cultured in a defined medium containing either 10 mM glutamate or nitrate as the sole nitrogen source. Nodules and bacteriods were isolated from plants that were only N2-dependent or grown in the presence of 2 mM KNO3. Rates of activity in nodules were determined by an in vivo assay, and those of cultured cells and bacteriods were assayed after permeabilization of the cells with alkyltrimethyl ammonium bromide. All seven strains examined expressed NR activity as free-living cells and as symbiotic forms, regardless of the hup genotype of the strain used for inoculation. Although the presence of nitrate increased nitrate reduction by cultures cells and nodules, no differences in NR activity were observed between bacteroids isolated from nodules of plants fed with nitrate or grown on N2-fixation exclusively. Cultured cells, nodules and bacteriods of strains with hup - genotype (USDA 138, L-236, 3. 15B3 and PJ17) had higher rates of NR activity than those with hup + genotype (USDA 110, USDA 122 DES and CB1003). These results suggest that NR activity is reduced in the presence of a genetic determinant associated with the hup region of B. japonicum.Abbreviations EDTA ethylene-diamine tetraacetic acid - Hup hydrogen uptake - MOPS 3-(N-morpholino)-propane sulfonic acid - NR nitrate reductase - PVP polyvinyl-polypyrrolidone - Tris Tris(hydroxymethyl)-aminomethane  相似文献   

20.
Summary The uptake of glucose and fructose from the medium by Catharanthus roseus cell suspensions was strongly inhibited by high medium salt concentration, such as found in LS (Linsmaier and Skoog 1965) medium. After inoculation into standard LS nutrient medium with less than 5 mM hexose no uptake occurred, while in low salt medium hexose was completely depleted. At a hexose concentration of 50 mM the uptake rate was higher in low salt medium than in standard medium. The lower rate of uptake at high salt concentration was not the result of a pH or osmotic effect of the salts. Probably the affinity of the hexose carrier is affected by the ion concentration of the medium. The decrease in medium salt concentration during normal batch culture probably will have a considerable effect on hexose uptake.Abbreviations LS Linsmaier and Skoog - S sucrose - N mineral nitrogen - K K2SO4 - F fructose  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号