首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
【目的】利用转录组测序研究硫酸锌添加提高絮凝酿酒酵母SPSC01乙酸胁迫耐性的分子机理。【方法】在10.0 g/L乙酸胁迫条件下,添加0.03 g/L硫酸锌,取对数期酿酒酵母细胞,与不添加硫酸锌的对照组细胞进行比较转录组分析。【结果】添加硫酸锌的实验组与对照组相比较,50个基因转录水平上调,162个基因转录水平下调,这些转录水平变化明显的基因涉及糖代谢、甲硫氨酸合成、维生素合成等多条代谢途径,此外,转录水平变化的基因还包括抗氧化酶基因等关键胁迫响应基因。【结论】硫酸锌添加可改变酿酒酵母全局基因转录水平,提高抗氧化酶及其他胁迫耐性相关基因的表达,影响细胞氧化还原平衡和能量代谢,通过对多基因转录的调控提高酿酒酵母乙酸耐受性。  相似文献   

3.
4.
Zinc is required for a wide variety of cellular functions and plays a key role in bacterial metabolism and virulence. However, Zn can also be toxic and, therefore, its influx is tightly regulated. The high affinity zinc uptake transporter ZnuABC is the main Zn influx system in Salmonella enterica under conditions of Zn starvation. It has been shown that deletion of the gene encoding for its periplasmic subunit ZnuA significantly affects S. Typhimurium growth rate and virulence, highlighting the importance of this system in the host-pathogen interaction. To gain further insight into the mechanisms involved in Zn influx regulation, we characterized the main alterations in the ionome and proteome of S. Typhimurium wild type and znuA mutant strains grown either under Zn starvation or under Zn-replete conditions. We found significant differences in the element profile and protein expression that were reversed by Zn supplementation. In particular, several of the differentially regulated proteins are predicted to be metal-binding proteins. Interestingly, their over-expression in the znuA mutant strain strictly depends on Zn starvation and correlates with the differences found at the ionome level. In conclusion, our data demonstrate that inhibition of Zn influx has relevant effects either on the bacterial ionome or proteome and shed new light on the role of the ZnuABC system and Zn influx in S. Typhimurium pathogenicity.  相似文献   

5.
Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.  相似文献   

6.
We have investigated the availability of zinc in the periplasmic space of Escherichia coli using a mutant Cu,Zn superoxide dismutase whose dimerization is triggered by zinc binding. This mutant enzyme accumulates in the monomeric form when wild type cells are grown in minimal medium, but assembles in the dimeric form when it is produced in the same medium by a mutant strain lacking the periplasmic zinc metallochaperone ZnuA. These results indicate that periplasmic zinc-containing proteins compete for metal binding when bacteria grow in environments where this element is present in traces. The effective ZnuA ability to sequester the available zinc ions from the periplasm suggests that zinc-containing cytoplasmic proteins are more important for bacterial viability than the periplasmic ones.  相似文献   

7.
8.
Escherichia coli MG1655 acid-inducible genes were identified by whole-genome expression profiling. Cultures were grown to the mid-logarithmic phase on acidified glucose minimal medium, conditions that induce glutamate-dependent acid resistance (AR), while the other AR systems are either repressed or not induced. A total of 28 genes were induced in at least two of three experiments in which the gene expression profiles of cells grown in acid (pH 5.5 or 4.5) were compared to those of cells grown at pH 7.4. As expected, the genes encoding glutamate decarboxylase, gadA and gadB, were significantly induced. Interestingly, two acid-inducible genes code for small basic proteins with pIs of >10.5, and six code for small acidic proteins with pIs ranging from 5.7 to 4.0; the roles of these small basic and acidic proteins in acid resistance are unknown. The acid-induced genes represented only five functional grouping categories, including eight genes involved in metabolism, nine associated with cell envelope structures or modifications, two encoding chaperones, six regulatory genes, and six unknown genes. It is unlikely that all of these genes are involved in the glutamate-dependent AR. However, nine acid-inducible genes are clustered in the gadA region, including hdeA, which encodes a putative periplasmic chaperone, and four putative regulatory genes. One of these putative regulators, yhiE, was shown to significantly increase acid resistance when overexpressed in cells that had not been preinduced by growth at pH 5.5, and mutation of yhiE decreased acid resistance; yhiE could therefore encode an activator of AR genes. Thus, the acid-inducible genes clustered in the gadA region appear to be involved in glutatmate-dependent acid resistance, although their specific roles remain to be elucidated.  相似文献   

9.
10.
【目的】研究锌离子缺乏对肺炎链球菌的影响,找到其适应性生长机制。【方法】以肺炎链球菌为模型,利用加锌和不加锌的培养基对细菌进行培养,收集细胞蛋白,采用双向凝胶电泳,结合金属亲和层析和质谱技术鉴定差异表达蛋白,进而通过生物信息学分析蛋白质相互关系,从中找到细菌适应锌离子匮乏条件的关键代谢通路和蛋白。【结果】测定了在限制培养条件下肺炎链球菌的最适生长浓度,建立了锌离子调控蛋白双向凝胶电泳图谱,鉴定到了96个差异表达蛋白斑点,共67个差异蛋白,其中32个表达下调,35个表达上调,锌离子调控蛋白的作用可能主要体现在糖代谢、核酸代谢、氧化还原作用、辅助蛋白质翻译、合成及折叠等方面。建立了锌结合蛋白的差异表达图谱,鉴定到了10个差异表达蛋白斑点,共7个差异蛋白,其中1个表达下调,6个表达上调。锌离子结合蛋白的作用可能主要体现在应对压力、蛋白质折叠和转运、氨基酸代谢等方面。【结论】肺炎链球菌主要通过调控碳水化合物代谢和核酸代谢等多个代谢通路来应对宿主锌金属离子匮乏的环境,从而使自身能够存活并对宿主形成感染。本研究为揭示细菌在宿主环境,特别是金属离子匮乏条件下的适应性生长机制提供理论基础。  相似文献   

11.
12.
13.
14.
15.
16.
17.
Plants take up a wide range of trace metals/metalloids(hereinafter referred to as trace metals)from the soil,some of which are essential but become toxic at high concentrations(e.g.,Cu,Zn,Ni,Co),while others are non-essential and toxic even at relatively low concentrations(e.g.,As,Cd,Cr,Pb,and Hg). Soil contamination of trace metals is an increasing problem worldwide due to intensifying human activities.Trace metal contamination can cause toxicity and growth inhibition in plants,as well as accum...  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号