首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
Similarly to many protein toxins, the growth factors fibroblast growth factor 1 (FGF-1) and FGF-2 translocate from endosomes into the cytosol. It was recently found that certain toxins are dependent on cytosolic Hsp90 for efficient translocation across the endosomal membrane. We therefore investigated the requirement for Hsp90 in FGF translocation. We found that low concentrations of the specific Hsp90 inhibitors, geldanamycin and radicicol, completely blocked the translocation of FGF-1 and FGF-2 to the cytosol and the nucleus. The drugs did not interfere with the initial binding of FGF-1 to the growth factor receptors at the cell-surface or with the subsequent internalization of the growth factors into endosomes. The activation of known signaling cascades downstream of the growth factor receptors was also not affected by the drugs. The data indicate that the drugs block translocation from endosomes to the cytosol implying that Hsp90 is required for translocation of FGF-1 and FGF-2 across the endosomal membrane.  相似文献   

2.
Exogenous fibroblast growth factor 1 (FGF1) signals through activation of transmembrane FGF receptors (FGFRs) but may also regulate cellular processes after translocation to the cytosol and nucleus of target cells. Translocation of FGF1 occurs across the limiting membrane of intracellular vesicles and is a regulated process that depends on the C-terminal tail of the FGFR. Here, we report that translocation of FGF1 requires activity of the alpha isoform of p38 mitogen-activated protein kinase (MAPK). FGF1 translocation was inhibited after chemical inhibition of p38 MAPK or after small interfering RNA knockdown of p38alpha. Translocation was increased after stimulation of p38 MAPK with anisomycin, mannitol, or H2O2. The activity level of p38 MAPK was not found to affect endocytosis or intracellular sorting of FGF1/FGFR1. Instead, we found that p38 MAPK regulates FGF1 translocation by phosphorylation of FGFR1 at Ser777. The FGFR1 mutation S777A abolished FGF1 translocation, while phospho-mimetic mutations of Ser777 to Asp or Glu allowed translocation to take place and bypassed the requirement for active p38 MAPK. Ser777 in FGFR1 was directly phosphorylated by p38alpha in a cell-free system. These data demonstrate a crucial role for p38alpha MAPK in the regulated translocation of exogenous FGF1 into the cytosol/nucleus, and they reveal a specific role for p38alpha MAPK-mediated serine phosphorylation of FGFR1.  相似文献   

3.
Externally added fibroblast growth factor-1 (FGF-1) is capable of crossing cellular membranes to reach the cytosol and the nucleus in a number of cell types. We have monitored the translocation of the growth factor by two methods: phosphorylation of FGF-1, and prenylation of an FGF-1 mutant that contains a C-terminal prenylation signal. Inhibition of endosomal acidification by ammonium chloride or monensin did not block the translocation of FGF-1, whereas bafilomycin A1, a specific inhibitor of vacuolar proton pumps, blocked translocation completely. A combination of ionophores expected to dissipate the vesicular membrane potential (valinomycin plus monensin) also fully inhibited the translocation. The inhibition of translocation by bafilomycin A1 was overcome in the presence of monensin or nigericin, while ouabain blocked translocation under these conditions. The data indicate that translocation of FGF-1 to cytosol occurs from the lumen of intracellular vesicles possessing vacuolar proton pumps, and that a vesicular membrane potential is required. Apparently, activation of vesicular Na+/K+-ATPase by monensin or nigericin generates a membrane potential that can support translocation when the proton pump is blocked.  相似文献   

4.
Numerous evidence indicates that some of the activities of fibroblast growth factor 2 (FGF-2) depend on an intracrine mode of action. Recently, we showed that three high molecular mass (HMM) nuclear forms of FGF-2 are part of a 320-kDa protein complex while the cytoplasmic AUG-initiated form is included in a 130-kDa complex. Consequently, the characterization of FGF endogenous targets has become crucial to allow the elucidation of their endogenous activities. Through the screening of GAL4-based yeast two-hybrid expression libraries, we have isolated a gene encoding a nuclear protein of 55 kDa, FIF (FGF-2-interacting-factor), which interacts specifically with FGF-2 but not with FGF-1, FGF-3, or FGF-6. In this system, FIF interacts equally well with the NH2-extended 24-kDa FGF form as with the 18-kDa form, indicating that the FIF-binding motif is located in the last 155 amino acids of FGF-2. Nevertheless, coimmunoprecipitation experiments showed an exclusive association with HMM FGF-2. The predicted protein contains a canonical leucine zipper domain and three overlapping hydrophobic heptad repeats. The region spanning these repeats is, together with a region located in the N-terminal part of the FIF protein, implicated in the binding to FGF-2. In contrast to the full-length FIF protein, several deletion constructs were able to transactivate a lac-Z reporter gene. Furthermore, the COOH-terminal part, but not the full-length FIF protein, has previously been shown to exhibit antiapoptotic properties. Thus we discuss the possibility that these activities could reflect a physiological function of FIF through its interaction with FGF-2.  相似文献   

5.
A 26-amino-acid peptide (designated PFNP) composed of the nuclear localization signal of fibroblast growth factor (FGF)-1 and a membrane-permeable peptide is known to mimic FGF-1's ability to stimulate DNA synthesis in various cell types at low cell densities. The underlying molecular mechanism is unknown, however. Here we show that PFNP activity is inhibited in murine fibroblasts by a tyrosine kinase inhibitor, that PFNP does not bind to the FGF receptor, and that PFNP does not induce phosphorylation of the FGF receptor substrate. In addition, expression of a dominant-negative form of Ras, which abolished the activities of epidermal growth factor (EGF) and heparin-binding EGF, had no affect on PFNP-induced DNA synthesis. Despite this apparent Ras independence, PFNP activity correlated with phosphorylation of ERK1/2 MAP kinases and was concentration dependently inhibited by inhibitors of ERK1/2 MAP kinase phosphorylation. These results indicate that whereas Ras activation is dispensable for PFNP-induced DNA synthesis, activation of tyrosine kinases and ERK1/2 kinases, albeit independently of the FGF receptor system, is crucial. Interestingly, FGF-1 signaling was predominantly Ras-independent when the cell density was optimum for PFNP, suggesting that PFNP and FGF-1 share the same signaling mechanism.  相似文献   

6.
The cysteine-rich FGF receptor (CFR) is a 150-kD membrane-associated glycoprotein that specifically binds FGFs. CFR protein is not detectable at the cell surface and immunocytochemistry with anti-CFR antibodies demonstrates that CFR is concentrated in the Golgi apparatus. These data suggest CFR does not function as a plasma membrane FGF receptor. CFR expressed in chinese hamster ovary cells reduces the intracellular accumulation of exogenously applied FGF-1 and FGF-2. A mutant CFR lacking the juxtamembrane, transmembrane and intracellular domains is unable to alter intracellular FGF levels. Mutant CFR is detected throughout the cell, indicating that the domains absent in mutant CFR are required for appropriate subcellular localization and the regulation of intracellular FGF levels. Although the activation of plasma membrane receptors is necessary for cellular responses to FGFs, a requirement for intracellular FGF has also been proposed. The subcellular localization of CFR and its ability to regulate the levels of intracellular FGFs suggests that CFR may be involved in intracellular FGF trafficking and the regulation of cellular responses to FGFs. J. Cell. Physiol. 170:217–227, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Members of the fibroblast growth factor (FGF) family of peptide growth factors are widely expressed in the germ layer derivatives during gastrulation and early organogenesis of the mouse. We have investigated the effect of administering recombinant FGF-4 in the late-primitive streak stage embryo to test if the patterning of the body plan may be influenced by this growth factor. Shortly after FGF treatment the embryonic tissues up-regulated the expression of Brachyury and the RTK signaling regulator Spry2, suggesting that FGF signaling was activated as an immediate response to exogenous FGF. Concomitantly, Hesx1 expression was suppressed in the prospective anterior region of the embryo. After 24 h of in vitro development, embryos displayed a dosage-related suppression of forebrain morphogenesis, disruption of the midbrain-hindbrain partition, and inhibition of the differentiation of the embryonic mesoderm. Overall, development of the anterior-posterior axis in the late gastrula is sensitive to the delivery of exogenous FGF-4. The early response associated with the expression of Spry2 suggests that the later phenotype observed could be primarily related to an inhibition of the FGF signaling pathway.  相似文献   

8.
Shi HL  Yang T  Deffar K  Dong CG  Liu JY  Fu CL  Zheng DX  Qin B  Wang JJ  Wang XZ  Zhu XJ 《IUBMB life》2011,63(2):129-137
The fibroblast growth factors (FGFs) are important for embryo development, wound healing, hematopoiesis, and angiogenesis. FGF-1, a member of FGF family, is involved in both receptor-dependent pathways and an intracrine pathway. Studies have recently shown that FGF-1 is overexpressed in the early stages of several kinds of cancer. Thus, FGF-1 is a candidate for cancer immunotargeting. To study the potential use of therapeutic antibodies against FGF-1, a monoclonal hybridoma 1C9 secreting monoclonal antibody specific for FGF-1 was developed. Then, a single-chain variable fragment (scFv) antibody was genetically engineered from hybridama 1C9. The binding of the scFv1C9 to the antigen FGF-1 was demonstrated by ELISA and immunoprecipitation assays. Functional analysis showed that the overexpressed scFv1C9 in MCF-7 cells targeted endogenous FGF-1 and prevented the translocation of FGF-1 into the nucleus, resulting in the blockade of the intracrine pathway of FGF-1, which caused the G1 arrest by p21 up-regulation. These results suggest that the generated scFv1C9 is an effective inhibitor of the intracrine pathway of FGF-1 and has a potential application as anti-tumoral agent in breast cancer.  相似文献   

9.
10.
11.
Pye DA  Vivès RR  Hyde P  Gallagher JT 《Glycobiology》2000,10(11):1183-1192
The interaction of heparan sulfate (HS) (and the closely related molecule heparin) with FGF-1 is a requirement for enabling the growth factor to activate its cell surface tyrosine kinase receptor. However, little is known about the regulatory role of naturally occurring cell surface HS in FGF-1 activation. We have addressed this issue by utilizing a library of HS oligosaccharides, which are defined in both length and sulfate content. Mitogenic activation assays using these oligosaccharides showed that HS contained both FGF-1 activatory and inhibitory sugar sequences. Further analysis of these oligosaccharides showed a clear correlation between FGF-1 promoting activity and their 6-O-sulfate content. The results, in particular with the dodecasaccharide sequences, suggested that specific positioning of 6-O-sulfate groups may be required for the promotion of FGF-1 mitogenic activity. This may also be true for 2-O-sulfate groups though the evidence was not as conclusive. Differential activation of FGF-1 and FGF-2 was also observed and found to be mediated by both oligosaccharide length and sulfation pattern, with different specific O-sulfate positioning being implicated for the promotion of different growth factors. These results suggest that variation and tight control of the fine structure of HS may allow cells to not only control their positive/negative responses to individual FGFs but also to change specificity towards promotion of different members of the FGF family.  相似文献   

12.
Basic fibroblast growth factor (bFGF or FGF-2) exerts its pleiotropic activities both as an exogenous and an intracellular factor. FGF-1 and FGF-2 are prototypes for this dual signalling, but the mechanisms of their intracellular actions remain unknown. Here we show that Translokin, a cytoplasmic protein of relative molecular mass 55,000 (M(r) 55K), interacts specifically with the 18K form of FGF-2. Translokin is ubiquitously expressed and colocalizes with the microtubular network. As Translokin does not interact with FGF-1, we used a strategy based on FGF-1-FGF-2 chimaeras to map the interacting regions in FGF-2 and to generate Nb1a2, a non-interacting variant of FGF-2. Although most of the FGF-2 properties are preserved in Nb1a2, this variant is defective in intracellular translocation and in stimulating proliferation. The fusion of a nuclear localization signal to Nb1a2 restores its mitogenic activity and its nuclear association. Inhibiting Translokin expression by RNA interference reduces the translocation of FGF-2 without affecting the intracellular trafficking of FGF-1. Our data show that the nuclear association of internalized FGF-2 is essential for its mitogenic activity and that Translokin is important in this translocation pathway.  相似文献   

13.
Nuclear localization of fibroblast growth factors (FGF) have been reported by many laboratories. We demonstrate here that FGF-1, the precursor for acidic FGF contains a putative nuclear translocation sequence (NTS) NYKKPKL, which is able to direct the expression of the bacterial beta galactosidase (beta gal) gene to the nucleus of transfected NIH 3T3 cells. However, this NTS is unable to target either FGF-1 itself or a FGF-1-beta gal fusion protein into the nucleus, suggesting that FGF-1 may contain an additional sequence which prevents endogenously expressed FGF-1 from being translocated into the nucleus. Indeed, when FGF-1 was fused to the NTS derived from the yeast histone 2B gene, the chimeric construct also failed to be transported into the nucleus either by itself or as a beta gal fusion protein. Interestingly, when 125I-FGF-1 was used to stimulate quiescent NIH 3T3 cells, a significant amount of internalized 125I-FGF-1 (approximately 10%) was found within the nucleus and the nuclear localization of FGF-1 through the exogenous pathway could be significantly reduced by suramin, an inhibitor of the interaction of FGF-1 with its receptor. These data suggest that while FGF-1 contains a NTS, nuclear translocation requires an exogenous and not an endogenous pathway.  相似文献   

14.
Fibroblast growth factor 2 (FGF-2) is a pro-angiogenic mediator that is secreted by both normal and neoplastic cells. Intriguingly, FGF-2 has been shown to be exported by an endoplasmic reticulum/Golgi-independent pathway; however, the molecular machinery mediating this process has remained elusive. Here we introduce a novel in vitro system that functionally reconstitutes FGF-2 secretion. Based on affinity-purified plasma membrane inside-out vesicles, we demonstrate post-translational membrane translocation of FGF-2 as shown by protease protection experiments. This process is blocked at low temperature but apparently does not appear to be driven by ATP hydrolysis. FGF-2 membrane translocation occurs in a unidirectional fashion requiring both integral and peripheral membrane proteins. These findings provide direct evidence that FGF-2 secretion is based on its direct translocation across the plasma membrane of mammalian cells. When galectin-1 and macrophage migration inhibitory factor, other proteins exported by unconventional means, were analyzed for translocation into plasma membrane inside-out vesicles, galectin-1 was found to be transported as efficiently as FGF-2. By contrast, migration inhibitory factor failed to traverse the membrane of inside-out vesicles. These findings establish the existence of multiple distinct secretory routes that are operational in the absence of a functional endoplasmic reticulum/Golgi system.  相似文献   

15.
Exposure of the Py1a rat osteoblastic cells to butyl benzyl phthalate (BBP) and dibutyl phthalate (DBP) showed that these endocrine disrupting chemicals (EDC) strongly and reversibly affect the cytoplasmic fibroblast growth factor-2 (FGF-2) translocation into the nucleus in a dose-dependent and time-related manner. Stimulation of cells with high concentrations of BBP or DBP for short timing gave results comparable to those of cells treated with low concentrations for long timing. By confocal laser scanning microscope (CLSM) analysis it was found that the first relevant effect resulted in an accumulation of FGF-2 near the nuclear envelope, sometimes in the shape of clusters; the growth factor was then translocated into the nucleus and, finally, after long periods of exposure, the basal nuclear and cytoplasmic binding, typical of unstimulated cells, was re-established. In addition it was found that phthalate esters did not affect the FGF receptor 2 (FGFR-2) but decreased Con A binding indicating a possible inhibition of collagen fiber assembly. The different concentrations and timing of exposure of BBP and DBP affected the FGF-2 modulation in a similar way. Noticeable cumulative effects of BBP and DBP were not observed.  相似文献   

16.
Although the angiogenic proteins acidic fibroblast growth factor (FGF-1) and basic fibroblast growth factor (FGF-2) both interact with the transition metal copper, itself a putative modulator of angiogenesis, a role for copper in FGF function has not been established. Using nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we detect the complete conversion of recombinant forms of human FGF-1 monomer protein to FGF-1 homodimers after exposure to copper ions. In contrast, not all forms of bovine FGF-1 isolated from bovine brain or a recombinant preparation of human FGF-2 completely formed homodimers after exposure to copper ions under similar conditions. Since the copper-induced FGF-1 homodimers reverted to the monomer form in the presence of dithiothreitol, specific alkylation of cysteine residues by pyridylethylation prevented FGF-1 homodimer formation, and preformed FGF-1 homodimers could not be dissociated by the metal chelator EDTA, FGF-1 dimer formation appeared to result from the formation of intermolecular disulfide bonds by copper-induced oxidation of sulfhydryl residues. FGF-1 homodimers bound with similar apparent affinity as FGF-1 monomers to immobilized copper ions, both eluting at 60 mM imidazole. Both human FGF-1 monomer and dimer forms had a 6-fold higher apparent affinity for immobilized copper ions, as compared with human FGF-2, which eluted in the monomer form at 10 mM imidazole. Further, in contrast to FGF-1 monomers, which dissociate from immobilized heparin in 1.0 M NaCl, preformed FGF-1 homodimers had reduced apparent affinity for immobilized heparin and eluted at 0.4 M NaCl. In contrast, the apparent affinity of human FGF-2 for immobilized heparin was unaffected after exposure to copper ions. Heparin appeared to modulate the formation of copper-induced intermolecular disulfide bonds for FGF-1 but not FGF-2, since co-incubation of heparin and copper with FGF-1 monomers resulted in dimers and other oligomeric complexes. FGF-1 copper-induced homodimers failed to induce mitogenesis in [3H]thymidine incorporation assays, an effect which could be reversed by treatment with dithiothreitol, whereas FGF-2-induced mitogenic activity was relatively unaffected by pretreatment with copper. The differences between human FGF-1 and FGF-2 in protein-copper interactions may be due to differing free thiol content and arrangement between the two proteins. A recombinant human FGF-1 mutant containing the two cysteines conserved throughout the FGF family of proteins but lacking a cysteine residue (Cys 131) present in wild-type human FGF-1 but not human FGF-2 readily formed copper-induced dimers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Previous studies have shown that the presence of a functional nuclear targeting sequence in the primary structure of fibroblast growth factor (FGF)-1 correlates with its activity as a mitogen, but not with its potential for inducing receptor tyrosine phosphorylation, suggesting the presence of a yet undefined function of FGF-1 as a nuclear protein. In the present study we have investigated the cytosolic and nuclear localization of exogenously added FGF-1. FGF-1-specific monoclonal antibodies were raised. By an extensive screening, highly specific antibody clones were isolated. For both BALB/c 3T3 and human umbilical vein endothelial (HUVE) cells, immunofluorescence studies performed with those clones delineated that during G1 stage of cell cycle, FGF-1 transits from cytosol to nucleus. This was followed by a shift to the perinuclear and juxtanuclear region just prior to the onset of S-phase in BALB/c 3T3 cells. Confocal microscopical examinations confirmed that the nuclear staining resides throughout the nuclear matrix with some enrichment at the envelope boundary and in the nucleoli. Immunoblot analysis of the fractionated BALB/c 3T3 cells that had been induced to proliferate by serum and pulsed with exogenous FGF-1 at various timings revealed that the incorporation of exogenous FGF-1 into cytosol took place constantly, whereas the nuclear translocation significantly increased after 5 h following stimulation of the quiescent cells. The cytosolic form of FGF-1 is indicated to be present in soluble cytosolic fraction rather than membrane-enveloped compartments, endosomes, by the microinjection of anti FGF-1 antibody to HUVE cells cultured in the presence of FGF-1. The data demonstrate that the exogenously added FGF-1 is constantly endocytosed and fractioned into the cytosol soluble compartment, whereas its nuclear localization is regulated at the nuclear translocation level and takes place preferably at late G1 phase of the cell cycle.  相似文献   

18.
19.
Adenylate cyclase (AC) toxin from Bordetella pertussis penetrates eukaryotic cells and upon activation by calmodulin generates unregulated levels of intracellular cAMP. The process of toxin penetration into sheep erythrocytes was resolved into three consecutive steps including insertion, translocation, and intracellular cleavage. Insertion of the toxin into the cell membrane occurred over a wide temperature range (4-36 degrees C). In contrast, translocation of the toxin, i.e. transfer of the NH2-terminal catalytically active fragment across the membrane, occurred only above 20 degrees C and was highly temperature-dependent. While a single exposure of the toxin to Ca2+ was sufficient for its insertion into the plasma membrane, toxin translocation required exogenous Ca2+ at mM concentrations. Translocation was not affected by pretreatment of cells with trypsin, N-ethylmaleimide, and sodium carbonate at alkaline pH. The NH2-terminal fragment of the toxin was cleaved in the cell releasing the 45-kDa active AC into the cytosol. The cleavage was blocked by treatment of cells with N-ethylmaleimide. It is hypothesized that the COOH-terminal portion of the toxin creates in the membrane a channel through which the NH2-terminal fragment is translocated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号