首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biologic effect of eicosanoids depends in large measure upon the relative masses in tissues of eicosanoids derived from the n-6 fatty acids, dihomogammalinolenic acid and arachidonic acid, and the n-3 fatty acid, eicosapentaenoic acid. Generation of this tissue balance is related to the relative cellular masses of these precursor fatty acids, the competition between them for entry into and release from cellular phospholipids, and their competition for the enzymes that catalyze their conversion to eicosanoids. In order to better understand these processes, we studied the cellular interactions of n-6 and n-3 fatty acids using an essential fatty acid-deficient, PGE-producing, mouse fibrosarcoma cell line, EFD-1. Unlike studies using cells with endogenous pools of n-6 and n-3 fatty acids, the use of EFD-1 cells enabled us to examine the metabolic fate of each family of fatty acids both in the presence and in the absence of the second family of fatty acids. Thus, the specific effects of one fatty acid family on the other could be directly assessed. In addition, we were able to replete the cells with dihomogammalinolenic acid (DHLA), arachidonic acid (AA), and eicosapentaenoic acid (EPA) of known specific activities; thus the masses of cellular DHLA, AA, and EPA, and their metabolites, PGE1, PGE2, and PGE3, respectively, could be accurately quantitated. The major findings of this study were: 1) n-6 fatty acids markedly stimulated the elongation of EPA to 22:5 whereas n-3 fatty acids inhibited the delta 5 desaturation of DHLA to AA and the elongation of AA to 22:4; 2) n-6 fatty acids caused a specific redistribution of cellular EPA from phospholipid to triacylglycerol; 3) n-3 fatty acids reduced the mass of DHLA and AA only in phosphatidylinositol whereas n-6 fatty acids reduced the mass of EPA to a similar extent in all cellular phospholipids; and 4) n-3 fatty acids caused an identical (33%) reduction in the bradykinin-induced release of PGE1 and PGE2, whereas n-6 fatty acids stimulated PGE3 release 2.3-fold. Together, these highly quantitative metabolic data increase our understanding of the regulation of both the cellular levels of DHLA, AA, and EPA, and their availability for eicosanoid synthesis. In addition, these findings provide a context for the effective use of these fatty acids in dietary therapies directed at modulation of eicosanoid production.  相似文献   

2.
Dietary fish oil containing omega 3 highly unsaturated fatty acids has cardioprotective and anti-inflammatory effects. Prostaglandins (PGs) and thromboxanes are produced in vivo both from the omega 6 fatty acid arachidonic acid (AA) and the omega 3 fatty acid eicosapentaenoic acid (EPA). Certain beneficial effects of fish oil may result from altered PG metabolism resulting from increases in the EPA/AA ratios of precursor phospholipids. Here we report in vitro specificities of prostanoid enzymes and receptors toward EPA-derived, 3-series versus AA-derived, 2-series prostanoid substrates and products. The largest difference was seen with PG endoperoxide H synthase (PGHS)-1. Under optimal conditions purified PGHS-1 oxygenates EPA with only 10% of the efficiency of AA, and EPA significantly inhibits AA oxygenation by PGHS-1. Two- to 3-fold higher activities or potencies with 2-series versus 3-series compounds were observed with PGHS-2, PGD synthases, microsomal PGE synthase-1 and EP1, EP2, EP3, and FP receptors. Our most surprising observation was that AA oxygenation by PGHS-2 is only modestly inhibited by EPA (i.e. PGHS-2 exhibits a marked preference for AA when EPA and AA are tested together). Also unexpectedly, TxA(3) is about equipotent to TxA(2) at the TP alpha receptor. Our biochemical data predict that increasing phospholipid EPA/AA ratios in cells would dampen prostanoid signaling with the largest effects being on PGHS-1 pathways involving PGD, PGE, and PGF. Production of 2-series prostanoids from AA by PGHS-2 would be expected to decrease in proportion to the compensatory decrease in the AA content of phospholipids that would result from increased incorporation of omega 3 fatty acids such as EPA.  相似文献   

3.
Cyclooxygenases, peroxide tone and the allure of fish oil   总被引:9,自引:0,他引:9  
  相似文献   

4.
Dihomogammalinolenic acid is derived from gammalinolenic acid, administration of which suppresses joint inflammation. It is reported here that interleukin 1β (IL-1β) production by human monocytes is enhanced markedly when cells are incubated 18–24 h with the polyunsaturated fatty acids dihomogammalinolenic acid (DGLA) and arachidonic acid (AA), then stimulated with lipopolysaccharide. Effects of eicosapentaenoic acid (EPA) on IL-1β production are minimal, and palmitic acid (PA) does not influence IL-1β production.  相似文献   

5.
Separation and quantification of prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) were achieved using reverse phase high performance liquid chromatography (HPLC). Panacyl bromide (p-(9-anthroyloxy)phenacyl bromide) (PAB) derivatives of PGE2 and PGE1 were prepared. Reverse phase HPLC using a linear gradient of 56% to 80% acetonitrile in water containing 0.10% acetic acid gave baseline resolution of the two derivatives. A 3 um diameter particle, C18 column provided good resolution and reproducible recoveries. Human synovial tissue cells were incubated with the precursor fatty acids for PGE1 or PGE2 and stimulated with a crude Interleukin 1 (IL-1) preparation. Cells grown in the presence of dihomogammalinolenic acid (DGLA), the precursor for PGE1, made significantly more PGE1 than cells grown in control medium or in the presence of arachidonic acid, precursor for PGE2. PGE2 synthesis was reduced when DGLA was added to cells (resting or IL-1-stimulated).  相似文献   

6.
Human platelet-type 12-lipoxygenase (12-LOX) has recently been shown to play an important role in regulation of human platelet function by reacting with arachidonic acid (AA). However, a number of other fatty acids are present on the platelet surface that, when cleaved from the phospholipid, can be oxidized by 12-LOX. We sought to characterize the substrate specificity of 12-LOX against six essential fatty acids: AA, dihomo-γ-linolenic acid (DGLA), eicosapentaenoic acid (EPA), α-linolenic acid (ALA), eicosadienoic acid (EDA), and linoleic acid (LA). Three fatty acids were comparable substrates (AA, DGLA, and EPA), one was 5-fold slower (ALA), and two showed no reactivity with 12-LOX (EDA and LA). The bioactive lipid products resulting from 12-LOX oxidation of DGLA, 12-(S)-hydroperoxy-8Z,10E,14Z-eicosatrienoic acid [12(S)-HPETrE], and its reduced product, 12(S)-HETrE, resulted in significant attenuation of agonist-mediated platelet aggregation, granule secretion, αIIbβ3 activation, Rap1 activation, and clot retraction. Treatment with DGLA similarly inhibited PAR1-mediated platelet activation as well as platelet clot retraction. These observations are in surprising contrast to our recent work showing 12(S)-HETE is a prothrombotic bioactive lipid and support our hypothesis that the overall effect of 12-LOX oxidation of fatty acids in the platelet is dependent on the fatty acid substrates available at the platelet membrane.  相似文献   

7.
In the third part of this study a basic lipid model (regarding phospholipids, triglycerides, cholesterol esters and free fatty acids) for keloids (n=20), compared with normal skin of keloid prone and non-keloid prone patients (n=20 of each), was constructed according to standard methods, to serve as a sound foundation for essential fatty acid supplementation strategies in the prevention and treatment of keloid formations. Essential fatty acid deficiency (EFAD) of the omega-6 series (linoleic acid (LA), g-linolenic acid (GLA), and dihomo-g-linolenic acid (DGLA)) and the omega-3 series (a-linolenic acid (ALA) and eicosapentaenoic acid (EPA)), but enhanced arachidonic acid (AA) levels, were prevalent in keloid formations. Enhanced AA, but a deficiency of AA precursors (LA, GLA and DGLA) and inflammatory competitors (DGLA and EPA), are inevitably responsible for the overproduction of pro-inflammatory metabolites (prostaglandin E(2)(PGE(2))) participating in the pathogenesis of inflammation. Of particular interest was the extremely high free oleic acid (OA) levels present, apart from the high free AA levels, in the keloid formations. OA stimulates PKC activity which, in turn, activates PLA(2)activity for the release or further release of AA from membrane pools. Interactions between EFAs, eicosanoids, cytokines, growth factors and free radicals can modulate the immune response and the immune system in undoubtedly involved in keloid formation. The histopathology of keloids can be adequately explained by: persistence of inflammatory- and cytokine-mediated reactions in the keloid/dermal interface and peripheral areas, where fibroblast proliferation and continuous depletion of membrane linoleic acid occur; microvascular regeneration and circulation of sufficient EFAs in the interface and peripheral areas, where maintenance of metabolic active fibroblasts for collagen production occur; microvessel occlusion and hypoxia in the central areas, where deprivation of EFAs and oxygen with consequent fibroblast apoptosis occur, while excessive collagen remain. All these factors contribute to different fibroblast populations present in: the keloid / dermal interface and peripheral areas where increases in fibroblast proliferation and endogenous TGF-b occur, and these metabolic active fibroblast populations are responsible for enhanced collagen production: the central areas where fibroblast populations under hypoxic conditions occur, and these fibroblasts are responsible for excessive collagen production. It was concluded that: fibroblast membrane EFAD of AA precursors and inflammatory competitors, but prevailing enhanced AA levels, can contribute to a chain of reactions eventually responsible for keloid formations.  相似文献   

8.
To assess the possibility that diets rich in eicosapentaenoic acid (EPA) could have adverse effects on the skeleton, we examined the resorptive response to its major project, PGE3, and the effects and metabolism of EPA itself in cultured fetal rat long bones and neonatal rat calvaria. PGE3 stimulated bone resorption with a potency similar to that of PGE2. However, EPA was a much less effective precursor for PGE3 than was arachidonic acid (AA) for PGE2. In bones cultured with complement sufficient rabbit serum, which stimulates endogenous PGE release, addition of EPA had little effect on bone resorption while AA produced a substantial increase. Bones labeled with [3H]-AA and incubated with transforming growth factor-alpha (TGF-alpha), which stimulates endogenous PGE production, produced substantial amounts of PGE2, while bones labeled with [3H]-EPA and treated similarly produced less than 1/10th as much labeled PGE3. Thus, EPA appears to be a less effective precursor for the production of bone resorbing prostanoids than AA in cultured rat bone. However, since PGE3 is a potent stimulator of bone resorption, the possibility that dietary EPA can effect the production of bone resorbing prostanoids in man requires further study.  相似文献   

9.
Cytokines, released by T cells, participate in inflammation and produce tissue injury. Excess production of cytokines such as interleukins (ILs) and tumor necrosis factor (TNF) is believed to be involved in the pathobiology of conditions such as septicemia and septic shock, collagen vascular diseases, glomerulonephritis etc. On the other hand, prostaglandins (PGs) are known to modulate inflammation, immune response, and T-cell response to antigens. But relatively little information is available on the effects of PGs and PG precursors on the release of cytokines. Here the authors present data which suggests that PGs including thromboxane B2 (TXB2) and their precursors such as dihomo-gamma linolenic acid (DGLA), arachidonic acid (AA) and eicosapentaenoic acid (EPA) can inhibit T-cell proliferation and influence their ability to secrete IL-2, IL-4, IL-6 and TNF in vitro. These results may have relevance to the use of PG-precursors in various inflammatory conditions including collagen vascular diseases.  相似文献   

10.
Polyunsaturated fatty acids (PUFAs) have been shown to suppress the growth rate of human osteogenic sarcoma cells and to have selective cytotoxic activity against human cancer cells. The purpose of this study was to investigate the efficacy of various PUFAs on inhibition of prostaglandin (PG) synthesis by oral squamous carcinoma cells (SCC-25). A significant inhibition of PGE2 and PGF2 alpha synthesis in SCC-25 was observed by all PUFAs tested except in the case of linoleic acid (LA) at 10 microM level. At 10 microM level the rank order of inhibition of PG synthesis by PUFAs was docosahexaenoic (DHA) greater than eicosapentaenoic (EPA) + DHA greater than dihomogamma-linolenic (DGLA) greater than EPA greater than alpha-linolenic (ALA) greater than linoleic (LA). At 50, 75, 100 microM the rank order of inhibition was DGLA greater than EPA greater than EPA + DHA greater than DHA greater than ALA greater than LA.  相似文献   

11.
Prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2), derived by enzymatic oxidation of cellular dihomogammalinolenic acid (DHLA) and arachidonic acid (AA), respectively, have diverse and, at times, distinct biological actions. It has been suggested that PGE1 specifically inhibits a variety of inflammatory processes, and, in light of the potential therapeutic benefit of PGE1 and its fatty acid precursor in inflammatory disorders, there is growing interest in the biochemical mechanisms which determine the balance between PGE1 and PGE2 synthesis. Metabolic studies in this area have been hampered by the difficulties in measuring the extremely small masses of these prostaglandins which are generated in cell culture systems. We studied the regulation of PGE1 versus PGE2 synthesis using an essential fatty acid-deficient, PGE-producing, mouse fibrosarcoma cell line, EFD-1. Because EFD-1 cells contain no endogenous AA or DHLA, we were able to replete the cells with AA and DHLA of known specific activities; thus, the mass of both cellular AA and DHLA, and synthesized PGE1 and PGE2, could be accurately determined. The major finding of this study is that production of PGE2 was highly favored over production of PGE1 due to preferential incorporation of AA versus DHLA into, and release from, the total cellular phospholipid pool. Further, we correlated the selective release of AA versus DHLA from total cellular phospholipids with the selective incorporation of AA versus DHLA into specific phospholipid pools. In addition, we showed that conversion of DHLA to AA by delta 5 desaturase was enhanced by increasing the cellular mass of n-6 fatty acids and by increasing the cell proliferative activity. Together, these results indicate that the relative abundance of PGE2 versus PGE1 in vivo is not merely a function of the relative abundance of AA versus DHLA in tissues, but also relates to markedly different cellular metabolism of these two fatty acids.  相似文献   

12.
The effect of age on uterine fatty acid composition was studied in rats fed diets of differing fatty acid composition. Uteri of newly weaned 23-day rats had a higher fatty acid content and a higher proportion of short-chain (less than or equal to C18) fatty acids. Higher incorporation of C less than or equal to 18 fatty acids into neutral lipid (NL) and phospholipid (PL) of young 42-day rats compared with adult 240-day rats was detected. Uterine NL incorporated predominantly C less than or equal to 18 fatty acids which may be an important metabolic energy store in developing uterine tissue. Incorporation of C less than or equal to 18 fatty acids by uterine PL and NL was relatively unselective. In contrast, there was selective retention of arachidonic acid (AA) and docosahexanoic acid (DHA) throughout uterine development. An effect of dietary EFA on uterine n-3 and n-6 EFA was detected in each age group. There was marked retention of uterine AA when dietary supplies of n-6 EFA were low, but the total AA, eicosapentaenoic acid (EPA) and DHA in uterine PL remained constant in the three diet groups, and a constant content of AA, EPA and DHA was maintained throughout uterine development, regardless of diet. The degree of n-3 substitution achieved in this study inhibited uterine release of PG and parturition in adult rats.  相似文献   

13.
Altering dietary ratios of n-3 and n-6 polyunsaturated fatty acids (PUFA) represents an effective nonpharmaceutical means to improve systemic inflammatory conditions. An effect of PUFA on cartilage and bone formation has been demonstrated, and the purpose of this study was to determine the potential of PUFA modulation to improve ligament healing. The effects of n-3 and n-6 PUFA on the in vitro healing response of medial collateral ligament (MCL) fibroblasts were investigated by studying the cellular coverage of an in vitro wound and the production of collagen, PGE2, IL-1, IL-6, and TNF. Cells were exposed to a bovine serum albumin (BSA) control or either eicosapentaenoic acid (EPA, 20:5n-3) or arachidonic acid (AA, 20:4n-6) in the form of soaps loaded onto BSA for 4 days and wounded on Day 5. AA and EPA improved the healing of an in vitro wound over 72 hr. EPA increased collagen synthesis and the overall percentage of collagen produced, but AA reduced collagen production and total protein. PGE2 production was increased in the AA-treated group and decreased in the EPA-treated group, but was not affected by wounding. IL-1 was not produced at the time point evaluated, but TNF and IL-6 were both produced, and their levels varied relative to the PUFA or wounding treatment. There was a significant linear correlation (r2 = 0.57, P = 0.0045) between IL-6 level and collagen production. These results demonstrate that n-3 PUFA (represented by EPA in this study) positively affect the healing characteristics of MCL cells and therefore may represent a possible noninvasive treatment to improve ligament healing. Additionally, these results show that MCL fibroblasts produce PGE2, IL-6, and TNF and that IL-6 production is related to MCL collagen synthesis.  相似文献   

14.
Previous experiments have shown that dietary n-6 and n-3 polyenoic fatty acids (PFA) have different effects on collagen production, a process that may be related to the formation of prostaglandins (PG). This study tested the hypothesis that fibroblast collagen production could be regulated by different n- 6:n-3 PFA ratios and that the effects were mediated by PGE(2) and altered signaling via the different PGE receptor subtypes. Compared to a bovine serum albumin control, eicosapentaenoic acid (EPA; 20:5 n-3) treated cells significantly (P < 0.05) increased both collagen production and collagen as a percentage of total cellular protein (C-PTP), but arachidonic acid (AA; 20:4 n-6) reduced collagen production and C-PTP. As the amount of AA decreased and that of EPA increased, collagen production and C-PTP increased, especially when ratio of n-6:n-3 PFA was less than 1:1. C-PTP was significantly correlated with the amount of PGE(2) in the medium. AA- or EPA-treated cells produced similar C-PTP when incubated with 10(-6) M indomethacin, a cyclooxygenase inhibitor. Addition of exogenous PGE(2) to cell cultures treated with 10(-6) M indomethacin for 48 hrs decreased C-PTP in both AA and EPA groups. Decreased C-PTP was observed in AA-treated cells exposed to EP1, EP2, and EP4 PGE receptor agonists and in EPA-treated cells exposed to EP2 and EP4 agonists. AA-treated cell responded to activators of cyclic adenosine monophosphate and protein kinase C by decreasing C-PTP, but EPA-treated cells were unresponsive. In conclusion, collagen production in 3T3-Swiss fibroblasts induced by different n-6:n-3 PFA ratios was correlated with PGE(2) production and altered responsiveness and signaling via the different PGE receptor subtypes.  相似文献   

15.
Two studies tested the hypothesis that eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN) reduced bovine endometrial and trophoblast prostaglandin F(2alpha) (PGF(2alpha)) and prostaglandin E(2) (PGE(2)) release during short-term culture. In Study 1, endometrial tissues were collected from non-lactating, non-pregnant cows and endometrial plus trophoblast tissues from pregnant cows 16 days post-insemination. In Study 2, endometrial and trophoblast tissues were collected on day 17 of pregnancy, from cows synchronised using a double prostaglandin (PG) or Ovagentrade mark synchronisation. Tissues were incubated in medium only (M) or media supplemented with fatty acids: eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN). In Study 1, PGE(2) release from 'pregnant' endometria was higher (P=0.094) than from 'non-pregnant' endometria, while PGF(2alpha) concentrations were similar. Fatty acids treatment had no effect on PGF(2alpha) or PGE(2) release from either pregnant or non-pregnant endometria. Individual fatty acid treatments had no effect on the ratio of PGF(2alpha) to PGE(2) from trophoblast tissues, but when the data from the 3 fatty acid treatments were combined (EPA, DHA and LIN treatment groups) the ratio of PGF(2alpha) to PGE(2) was reduced (P=0.026) when compared to medium only. In Study 2, PGE(2) concentrations were higher (P=0.013) from the trophoblast collected from Ovagentrade mark cows as compared to that of the PG synchrony group. When the data from the 3-omega fatty acids were combined (DHA and EPA treatment groups), the 3-omega treatments decreased (P<0.05) PGE(2) biosynthesis from both endometrial and trophoblast tissues from animals synchronised following PG synchrony but not Ovagentrade mark synchrony. Short-term culture with low concentrations of 3-omega fatty acids tended to reduce prostaglandin release from trophoblast collected 16 days after insemination, with the type of synchrony modifying PGE(2) production from the trophoblast tissues collected 17 days after insemination. The ability of exogenous fatty acids to modify embryonic prostaglandin release needs to be examined in the context of supplementing dairy cows with different sources of fats. Synchronisation method altered trophoblast PGE(2) release, highlighting the importance of the hormonal environment in modifying embryonic prostaglandin synthesis and release.  相似文献   

16.
Eicosadienoic acid (Δ11,14-20:2; EDA) is a rare, naturally occurring n-6 polyunsaturated fatty acid (PUFA) found mainly in animal tissues. EDA is elongated from linoleic acid (LA), and can also be metabolized to dihomo-γ-linolenic acid (DGLA), arachidonic acid (AA), and sciadonic acid (Δ5,11,14-20:3; SCA). Although, the metabolism of EDA has been extensively studied, there are few reports regarding how EDA might affect inflammatory processes. The objective of this study was to determine the effect of EDA on the n-6 PUFA composition and inflammatory response of murine RAW264.7 macrophages to lipopolysaccharide (LPS). EDA was taken up rapidly by macrophages and metabolized to SCA, and the percentages of both fatty acids increased in cellular phospholipids in a dose-dependent manner. The incorporation of EDA into macrophage lipids increased the proportions of LA, DGLA, and AA as well, and reduced the proportion of total monounsaturated fatty acids. When LPS were applied to the macrophages, EDA decreased the production of nitric oxide (NO), and increased that of prostaglandin E(2) (PGE(2)) and tumor necrotic factor-α. The modulation of NO and PGE(2) was due, in part, to the modified expression of inducible nitric oxide synthase and type II cyclooxygenase. The differential effects of EDA on pro-inflammatory mediators might attribute to the negative feedback mechanism associated with prolonged inflammation. Furthermore, EDA was a weaker pro-inflammatory agent than LA, and not as anti-inflammatory as SCA. This study shows that EDA can modulate the metabolism of PUFA and alter the responsiveness of macrophages to inflammatory stimulation.  相似文献   

17.
We have studied the effects on bone of three structurally dissimilar non-steroidal anti-inflammatory drugs which inhibit prostaglandin cyclo-oxygenase activity (PGH synthase); indomethacin, flurbiprofen, and piroxicam. We used cultures of half calvaria from neonatal or fetal rats to measure effects on PGE2 production, measured by radioimmunoassay. In four day neonatal rat calvaria, indomethacin inhibited PGE2 release into the medium by 80% at 10(-8) M, while flurbiprofen and piroxicam produced similar inhibition at 10(-6) M. However, at 10(-10) M, treatment with all three compounds resulted in an increase in medium PGE2 concentration of 60 to 120%. To assess the mechanism of this effect, bones were labeled with [3H]-arachidonic acid, washed and cultured in the presence or absence of piroxicam. At 10(-6) M, piroxicam inhibited production of cyclo-oxygenase products and arachidonic acid release. However, at 10(-10) M, there was a substantial increase in labeled products, particularly PGE2, despite a further decrease in arachidonic acid release. In 21 day fetal rat cultures, flurbiprofen was found to increase PGE2 release both in control cultures and cultures which had been incubated with cortisol (10(-8) M) to reduce endogenous arachidonic acid release and supplied with exogenous arachidonic acid (10(-5) M) to provide a substrate. These results indicate that three potent inhibitors of PGH synthase can, paradoxically, increase prostaglandin production at low concentrations. The effect does not appear to be due to increased arachidonic acid release, and could be due to increased PGH synthase activity.  相似文献   

18.
Evidence for lipoxygenase pathway involvement in allergic tracheal contraction   总被引:10,自引:0,他引:10  
Challenge of actively sensitized guinea-pig trachea in vitro led to a contraction which was enhanced by the cyclo-oxygenase inhibitors, indomethacin and sodium meclofenamate. Cyclo-oxygenase inhibitors eliminated the release of PGE-like material induced by arachidonic acid (AA), histamine, and antigen challenge. AA (10 microgram./ml.) and PGE2 (100 ng./ml.) usually relaxed the trachea, whereas in the presence of cyclo-oxygenase inhibitors a contraction occurred. Phenidone and ETYA, which also blocked the lipoxygenase pathway of AA metabolism inhibited the enhancement of allergic tracheal contraction induced by cyclo-oxygenase inhibitors, decreased the time that the trachea remained contracted, and also eliminated the contraction induced by AA and PGE2. Thus, cyclo-oxygenase inhibitors may enhance allergic tracheal contraction by diverting AA metabolism into the lipoxygenase pathway and product of the latter pathway, possibly SRS-A, may be responsible for the enhancement and for the prolonged phase of allergic tracheal contraction. An analogous mechanism may account for aspirin-induced asthma in man.  相似文献   

19.
Cyclooxygenase-2 (COX-2) is important in the progression of epithelial tumors. Evidence indicates that omega-6 PUFAs such as arachidonic acid (AA) promote the growth of tumor cells; however, omega-3 fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] inhibit tumor cell proliferation. We investigated the effects of omega-3 PUFA on the expression and function of COX-2 in 70W, a human melanoma cell line that metastasizes to the brain in nude mice. We show that 1) tumor necrosis factor-alpha upregulates the expression of both COX-2 mRNA and prostaglandin E2 (PGE2) production, and 2) omega-3 and omega-6 PUFA regulate COX-2 mRNA expression and PGE2 production. AA increased COX-2 mRNA expression and prostaglandin production in omega-6-stimulated 70W cells. Conversely, COX-2 mRNA expression decreased in cells incubated with EPA or DHA. AA increased Matrigel invasion 2.4-fold, whereas EPA or DHA did not. Additionally, PGE2 increased in vitro invasion 2.5-fold, whereas exposure to PGE3 significantly decreased invasion. Our results demonstrate that incubation of 70W cells with either AA or PGE2 increased invasiveness, whereas incubation with EPA or DHA downregulated both COX-2 mRNA and protein expression, with a subsequent decrease in Matrigel invasion. Taken together, these results indicate that omega-3 PUFA regulate COX-2-mediated invasion in brain-metastatic melanoma.  相似文献   

20.
In a previous publication we reported that PUFAs of the n-6 and n-3 series caused significant inhibition of synthesis of both PGE2 (28.4-92.8%) and PGF2 alpha (24.4-84.0%) in the oral squamous carcinoma cell line SCC-25. In this report we describe the inhibitory effect of the same acids on PG synthesis in normal human gingival fibroblasts under the same experimental conditions. It was found that a combination of EPA + DCHA (6:4), DCHA and ALA caused significant reduction in synthesis of PGE2 (10.1-87.8%) and PGF2 alpha (14.0-54.6%) at the four dose levels studied. The rank order of potency of acids in reduction of PG synthesis was: EPA + DCHA greater than DCHA greater than EPA greater than ALA greater than LA greater than DGLA greater than GLA. The data suggest that although PUFAs are effective inhibitors of PG synthesis by gingival fibroblasts and SCC-25, the fibroblast is less susceptible to the inhibitory effect of fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号