首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The central nervous system octapeptide, neuropeptide FF (NPFF), is believed to play a role in pain modulation and opiate tolerance. Two G protein-coupled receptors, NPFF1 and NPFF2, were isolated from human and rat central nervous system tissues. NPFF specifically bound to NPFF1 (K(d) = 1.13 nm) and NPFF2 (K(d) = 0.37 nm), and both receptors were activated by NPFF in a variety of heterologous expression systems. The localization of mRNA and binding sites of these receptors in the dorsal horn of the spinal cord, the lateral hypothalamus, the spinal trigeminal nuclei, and the thalamic nuclei supports a role for NPFF in pain modulation. Among the receptors with the highest amino acid sequence homology to NPFF1 and NPFF2 are members of the orexin, NPY, and cholecystokinin families, which have been implicated in feeding. These similarities together with the finding that BIBP3226, an anorexigenic Y1 receptor ligand, also binds to NPFF1 suggest a potential role for NPFF1 in feeding. The identification of NPFF1 and NPFF2 will help delineate their roles in these and other physiological functions.  相似文献   

2.
3.
After stimulation with agonist, G protein-coupled receptors (GPCRs) activate G proteins and become phosphorylated by G protein-coupled receptor kinases (GRKs), and most of them translocate cytosolic arrestin proteins to the cytoplasmic membrane. Agonist-activated GPCRs are specifically phosphorylated by GRKs and are targeted for endocytosis by arrestin proteins, suggesting a connection between GPCR conformational changes and interaction with GRKs and arrestins. Previously, we showed that by substitution of histidine for residues at the cytoplasmic side of helix 3 (H3) and helix 6 (H6) of the parathyroid hormone (PTH) receptor (PTHR), a zinc metal ion-binding site is engineered that prevents PTH-stimulated G(s) activation (Sheikh, S. P., Vilardaga, J.-P., Baranski, T. J., Lichtarge, O., Iiri, T., Meng, E. C., Nissenson, R. A., and Bourne, H. R. (1999) J. Biol. Chem. 274, 17033-17041). These data suggest that relative movements between H3 and H6 are critical for G(s) activation. Does this molecular event play a similar role in activation of GRK and arrestin and in PTHR-mediated G(q) activation? To answer this question, we utilized the two previously described mutant forms of PTHR, H401 and H402, which contain a naturally present histidine residue at position 301 in H3 and a second substituted histidine residue at positions 401 and 402 in H6, respectively. Both mutant receptors showed inhibition of PTH-stimulated inositol phosphate and cAMP generation in the presence of increasing concentrations of Zn(II). However, the mutants showed no Zn(II)-dependent impairment of phosphorylation by GRK-2. Likewise, the mutants were indistinguishable from wild-type PTHR in the ability to translocate beta-arrestins/green fluorescent protein to the cell membrane and were also not affected by sensitivity to Zn(II). These results suggest that agonist-mediated phosphorylation and internalization of PTHR require conformational switches of the receptor distinct from the cAMP and inositol phosphate signaling state. Furthermore, PTHR sequestration does not appear to require G protein activation.  相似文献   

4.
The crystal structure of rhodopsin has provided the first three-dimensional molecular model for a G-protein-coupled receptor (GPCR). Alignment of the molecular model from the crystallographic structure with the helical axes seen in cryo-electron microscopic (cryo-EM) studies provides an opportunity to investigate the properties of the molecule as a function of orientation and location within the membrane. In addition, the structure provides a starting point for modeling and rational experimental approaches of the cone pigments, the GPCRs in cone cells responsible for color vision. Homology models of the cone pigments provide a means of understanding the roles of amino acid sequence differences that shift the absorption maximum of the retinal chromophore in the environments of different opsins.  相似文献   

5.
6.
The crystal structure of rhodopsin has provided the first three-dimensional molecular model for a G-protein-coupled receptor (GPCR). Alignment of the molecular model from the crystallographic structure with the helical axes seen in cryo-electron microscopic (cryo-EM) studies provides an opportunity to investigate the properties of the molecule as a function of orientation and location within the membrane. In addition, the structure provides a starting point for modeling and rational experimental approaches of the cone pigments, the GPCRs in cone cells responsible for color vision. Homology models of the cone pigments provide a means of understanding the roles of amino acid sequence differences that shift the absorption maximum of the retinal chromophore in the environments of different opsins.  相似文献   

7.
Continued discovery of ligands for G protein-coupled receptors   总被引:1,自引:0,他引:1  
Lee DK  George SR  O'Dowd BF 《Life sciences》2003,74(2-3):293-297
G protein-coupled receptors are under intense scrutiny as potential targets of drug research, which stems mostly from the sheer size and diversity of this receptor family as well as the recognized high levels of specificity and sensitivity attainable by drugs targeting these receptors. The continued discovery of genes encoding G protein-coupled receptors has provided an extensive reserve of potential therapeutic targets. However, testing experimental therapeutic agents at these receptors requires a high degree of receptor characterization, beginning with the identity of an endogenous ligand. Often, low levels of sequence identity of a newly identified receptor to previously characterized receptors preclude the prompt identification of a ligand. In such cases, innovative techniques commonly referred to as reverse pharmacology have been employed to ascertain the ligand's identity for these "orphan" receptors. To date over 30 endogenous ligands, both novel and previously known, have been paired with orphan G protein-coupled receptors. Here, we briefly summarize the recent identification of neuropeptides W and B and carboxylic acid anions for their respective receptors GPR7, GPR8 and GPR40, GPR41, GPR43.  相似文献   

8.
Lee SP  O'Dowd BF  George SR 《Life sciences》2003,74(2-3):173-180
G protein-coupled receptors (GPCRs) form homo-oligomeric and hetero-oligomeric complexes. This understanding has prompted a re-evaluation of many aspects of GPCR biology, however the concept of receptor complexes has not been fully integrated into the current thinking about GPCR structure and function. Nevertheless, receptor oligomerization is a pivotal aspect of the structure and function of GPCRs that has been shown to have implications for receptor trafficking, signaling, and pharmacology and more intricate models for understanding the physiological roles of these receptors are emerging. Here, we summarize some of the advances made in understanding the structural basis and the functional roles of homo- and hetero- oligomerization in this important group of receptors. Although this discussion focuses primarily on the dopamine receptors, particularly the D2 dopamine receptor, and the opioid and serotonin receptors, we discuss the principles governing the oligomerization of all rhodopsin-like GPCRs and potentially of the entire superfamily of these receptors.  相似文献   

9.
The D(2) and D(3) receptors (D(2)R and D(3)R), which are potential targets for antipsychotic drugs, have a similar structural architecture and signaling pathway. Furthermore, in some brain regions they are expressed in the same cells, suggesting that differences between the two receptors might lie in other properties such as their regulation. In this study we investigated, using COS-7 and HEK-293 cells, the mechanism underlying the intracellular trafficking of the D(2)R and D(3)R. Activation of D(2)R caused G protein-coupled receptor kinase-dependent receptor phosphorylation, a robust translocation of beta-arrestin to the cell membrane, and profound receptor internalization. The internalization of the D(2)R was dynamin-dependent, suggesting that a clathrin-coated endocytic pathway is involved. In addition, the D(2)R, upon agonist-mediated internalization, localized to intracellular compartments distinct from those utilized by the beta(2)-adrenergic receptor. However, in the case of the D(3)R, only subtle agonist-mediated receptor phosphorylation, beta-arrestin translocation to the plasma membrane, and receptor internalization were observed. Interchange of the second and third intracellular loops of the D(2)R and D(3)R reversed their phenotypes, implicating these regions in the regulatory properties of the two receptors. Our studies thus indicate that functional distinctions between the D(2)R and D(3)R may be found in their desensitization and cellular trafficking properties. The differences in their regulatory properties suggest that they have distinct physiological roles in the brain.  相似文献   

10.
A polyclonal antibody directed towards the last 73 amino acid residues of the rat type 1 cannabinoid (CB1) receptor strongly and exclusively labels a high molecular weight (between 160 and 200 kDa) form of the receptor in Western analysis. In contrast, a human CB1 polyclonal antibody identifies both monomeric CB1 as well as the high molecular weight form. The carboxy terminus (CT) antibody was also used in immunocytochemistry of rat hippocampal sections. Sections probed with CT antibody show intense staining of a meshwork of fibers and occasional interneurons of the stratum oriens, stratum pyramidal, and stratum radiatum of the CA1 and CA3 regions while mossy fibers and granule cells of the internal stratum appear unstained. These data provide evidence that CB1 likely exists as a dimer in vivo and that the carboxy end of the receptor may play a role in the assembly of the oligomer.  相似文献   

11.
Arrestins are a small family of proteins that regulate G protein-coupled receptors (GPCRs). Arrestins specifically bind to phosphorylated active receptors, terminating G protein coupling, targeting receptors to endocytic vesicles, and initiating G protein-independent signaling. The interaction of rhodopsin-attached phosphates with Lys-14 and Lys-15 in β-strand I was shown to disrupt the interaction of α-helix I, β-strand I, and the C-tail of visual arrestin-1, facilitating its transition into an active receptor-binding state. Here we tested the role of conserved lysines in homologous positions of non-visual arrestins by generating K2A mutants in which both lysines were replaced with alanines. K2A mutations in arrestin-1, -2, and -3 significantly reduced their binding to active phosphorhodopsin in vitro. The interaction of arrestins with several GPCRs in intact cells was monitored by a bioluminescence resonance energy transfer (BRET)-based assay. BRET data confirmed the role of Lys-14 and Lys-15 in arrestin-1 binding to non-cognate receptors. However, this was not the case for non-visual arrestins in which the K2A mutations had little effect on net BRET(max) values for the M2 muscarinic acetylcholine (M2R), β(2)-adrenergic (β(2)AR), or D2 dopamine receptors. Moreover, a phosphorylation-deficient mutant of M2R interacted with wild type non-visual arrestins normally, whereas phosphorylation-deficient β(2)AR mutants bound arrestins at 20-50% of the level of wild type β(2)AR. Thus, the contribution of receptor-attached phosphates to arrestin binding varies depending on the receptor-arrestin pair. Although arrestin-1 always depends on receptor phosphorylation, its role in the recruitment of arrestin-2 and -3 is much greater in the case of β(2)AR than M2R and D2 dopamine receptor.  相似文献   

12.
Two alternatively spliced Caenorhabditis elegans G protein-coupled receptors, T19F4.1a and T19F4.1b, were cloned and functionally characterized. The T19F4.1b receptor protein is 30 amino acids longer than T19F4.1a, and the difference in amino acid constitution is exclusively conferred to the intracellular C-terminal region, suggesting a potential difference in G protein-coupling specificity. Following cloning of the receptor cDNAs into the pcDNA3 vector and stable or transient transfection into Chinese hamster ovary cells, the aequorin bioluminescence/Ca2+ assay was used to investigate receptor activation. This is the first report of the construction of a cell line stably expressing a C. elegans neuropeptide receptor. Our experiments identified both receptors as being cognate receptors for two FMRFamide-related peptides encoded by the flp-2 precursor: SPREPIRFamide (FLP2-A) and LRGEPIRFamide (FLP2-B). Pharmacological profiling using truncated forms of FLP2-A and -B revealed that the active core of both peptides is EPIRFamide. Screening of peptides encoded by other flps did not result in a significant activation of the receptor. In contrast to other C. elegans receptors tested in heterologous expression systems, the functional activation of both T19F4.1a and T19F4.1b was not temperature-dependent. Screening in cells lacking the promiscuous Galpha16 suggests that T19F4.1a and b are both linked to the Gq pathway.  相似文献   

13.
Discovery of novel agonists and antagonists for G protein-coupled receptors (GPCRs) relies heavily on cell-based assays because determination of functional consequences of receptor engagement is often desirable. Currently, there are several key parameters measured to achieve this, including mobilization of intracellular Ca2+ and formation of cyclic adenosine monophosphate or inositol triphosphate. However, no single assay platform is suitable for all situations, and all of the assays have limitations. The authors have developed a new high-throughput homogeneous assay platform for GPCR discovery as an alternative to current assays, which employs detection of phosphorylation of the key signaling molecule p42/44 MAP kinase (ERK 1/2). The authors show that ERK 1/2 is consistently activated in cells stimulated by Gq-coupled GPCRs and provides a new high-throughput platform for screening GPCR drug candidates. The activation of ERK 1/2 in Gq-coupled GPCR systems generates comparable pharmacological data for receptor agonist and antagonist data obtained by other GPCR activation measurement techniques.  相似文献   

14.
Successful sequencing of the human genome has opened a new era in the life sciences and has greatly accelerated biomedical research. Among various research endeavors benefiting from established genomic information, one of the most fruitful areas is the research on orphan G protein-coupled receptors (GPCRs). Many intercellular mediators, including peptides, lipids, and other small molecules, have found their GPCRs in the plasma membrane, e.g., relaxin and tyramine. In the past 14 months, more than one dozen papers have been published reporting the finding of intercellular lipid mediators acting on rhodopsin family GPCRs. This review focuses primarily on intercellular lipid mediators and their recently discovered GPCRs.  相似文献   

15.
Identification of surrogate ligands for orphan G protein-coupled receptors   总被引:1,自引:0,他引:1  
We prepared fusion proteins with an alpha subunit of G protein Gi (Gi1alpha) of 26 orphan G protein-coupled receptors (GPCRs) and with Gsalpha of 10 orphan GPCRs, most of which had been identified from the human genome previously [FEBS Lett 520 (2002) 97]. Ligands for these fusion proteins were screened from a library consisting of approximately 1000 authentic compounds by measuring their effect on [35S]GTPgammaS binding to membrane preparations of insect Sf9 cells expressing these fusion proteins. Eleven compounds were found to act as surrogate agonists for a GPCR-Gsalpha and four GPCR-Gialpha fusion proteins, a compound as an inverse agonist for two GPCR-Gsalpha fusion proteins, and a compound as an endogenous agonist for a GPCR-Gialpha fusion protein.  相似文献   

16.
The protein kinase Akt plays a central role in a number of key biological functions including protein synthesis, glucose homeostasis, and the regulation of cell survival or death. The mechanism by which tyrosine kinase growth factor receptors stimulate Akt has been recently defined. In contrast, the mechanism of activation of Akt by other cell surface receptors is much less understood. For G protein-coupled receptors (GPCRs), conflicting data suggest that these receptors stimulate Akt in a cell type-specific manner by a yet to be fully elucidated mechanism. Here, we took advantage of the availability of cells, where Akt activity could not be enhanced by agonists acting on this large family of cell surface receptors, such as NIH 3T3 cells, to investigate the pathway linking GPCRs to Akt. We present evidence that expression of phosphatidylinositol 3-kinase (PI3K) beta is necessary and sufficient to transmit signals from G proteins to Akt in these murine fibroblasts and that the activation of PI3Kbeta may represent the most likely mechanism whereby GPCRs stimulate Akt, as the vast majority of cells do not express PI3Kgamma, a known G protein-sensitive PI3K isoform. Furthermore, available evidence indicates that GPCRs activate Akt by a pathway distinct from that utilized by growth factor receptors, as it involves the tyrosine phosphorylation-independent activation of PI3Kbeta by G protein betagamma dimers.  相似文献   

17.
The rate of ligand-induced phosphorylation of the V2 and V1a vasopressin receptors was characterized in HEK 293 cells. Both receptors were phosphorylated predominantly by GRKs, and the V1a receptor was also phosphorylated by protein kinase C regardless of the presence or absence of ligand. Phosphorylation of the V1aR catalyzed by GRKs reached maximal values at the shortest measured time: 15 seconds, and decayed rapidly with a t1/2 of 6 min in the continuous presence of AVP. In agreement with the hypothesis that dephosphorylation must precede receptor recycling to the cell surface, the V1aR returned rapidly to the cell surface after removal of the hormone from the medium. Phosphate incorporation into the V2R proceeded at a slower pace, and the internalized phosphorylated receptor failed to recycle to the cell surface and retained its phosphate for a long time in the presence or absence of ligand. A single mutation in the carboxy terminus of the V2R accelerated de-phosphorylation of the protein and conferred recycling properties to the V2R. These experiments provided molecular evidence for the hypothesis that internalization is required for de-phosphorylation and recycling of reactivated G protein coupled receptors to the cell surface.  相似文献   

18.
Melatonin receptors interact with pertussis toxin-sensitive G proteins to inhibit adenylate cyclase. However, the G protein coupling profiles of melatonin receptor subtypes have not been fully characterised and alternative G protein coupling is evident. The five C-terminal residues of Galpha subunits confer coupling specificity to G protein-coupled receptors. This report outlines the use of Galphas chimaeras to alter the signal output of human melatonin receptors and investigate their interaction with the C-termini of Galpha subunits. The Galphas portion of the chimaeras confers the ability to activate adenylate cyclase leading to cyclic AMP production. Co-transfection of HEK293 cells expressing MT(1) or MT(2) melatonin receptors with Galphas chimaeras and a cyclic AMP activated luciferase construct provided a convenient and sensitive assay system for identification of receptor recognition of Galpha C-termini. Luciferase assay sensitivity was compared with measurement of cyclic AMP elevations by radioimmunoassay. Differential interactions of the melatonin receptor subtypes with Galpha chimaeras were observed. Temporal and kinetic parameters of cyclic AMP responses measured by cyclic AMP radioimmunoassay varied depending on the Galphas chimaeras coupled. Recognition of the C-terminal five amino acids of the Galpha subunit is a requisite for coupling to a receptor, but it is not the sole determinant.  相似文献   

19.
Park PS  Filipek S  Wells JW  Palczewski K 《Biochemistry》2004,43(50):15643-15656
G protein-coupled receptor (GPCR)-mediated signal transduction has been studied for more than a century. Despite the intense focus on this class of proteins, a molecular understanding of what constitutes the functional form of the receptor is still uncertain. GPCRs have traditionally been conceptualized as monomeric proteins, and this view has changed little over the years until relatively recently. Recent biochemical and biophysical studies have challenged this traditional concept, and point instead to a mechanistic view of signal transduction wherein the receptor functions as an oligomer. Cooperative interactions within such an oligomeric array may be critical for the propagation of an external signal across the cell membrane and to the G protein, and may therefore underlie the mechanistic basis of signaling.  相似文献   

20.
Control of voltage-dependent Ca2+ channels by G protein-coupled receptors   总被引:9,自引:0,他引:9  
G proteins act as transducers between membrane receptors activated by extracellular signals and enzymatic effectors controlling the concentration of cytosolic signal molecules such as cAMP, cGMP, inositol phosphates and Ca2+. In some instances, the receptor/G protein-induced changes in the concentration of cytosolic signal molecules correlate with activity changes of voltage-dependent Ca2+ channels. Ca2+ channel modulation, in these cases, requires the participation of protein kinases whose activity is stimulated by cytosolic signal molecules. The respective protein kinases phosphorylate Ca2+ channel-forming proteins or unknown regulatory components. More recent findings suggest another membrane-confined mechanism that does not involve cytosolic signal molecules but rather a more direct control of voltage-dependent Ca2+ channels by G proteins. Modulation of Ca2+ channel activity that follows this apparently membrane-confined mechanism has been described to occur in neuronal, cardiac, and endocrine cells. The G protein involved in the hormonal stimulation of Ca2+ channels in endocrine cells may belong to the family of Gi-type G proteins, which are functionally uncoupled from activating receptors by pertussis toxin. The G protein Gs, which is activated by cholera toxin, may stimulate cardiac Ca2+ channels without the involvement of a cAMP-dependent intermediate step. Hormonal inhibition of Ca2+ channels in neuronal and endocrine cells is mediated by a pertussis toxin-sensitive G protein, possibly Go. Whether G proteins act by binding directly to Ca2+ channels or through interaction with as yet undetermined regulatory components of the plasma membrane remains to be clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号