首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid   总被引:1,自引:0,他引:1  
We isolated two nitrilase genes, ZmNIT1 and ZmNIT2, from maize (Zea mays) that share 75% sequence identity on the amino acid level. Despite the relatively high homology to Arabidopsis NIT4, ZmNIT2 shows no activity toward beta-cyano-alanine, the substrate of Arabidopsis NIT4, but instead hydrolyzes indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). ZmNIT2 converts IAN to IAA at least seven to 20 times more efficiently than AtNIT1/2/3. Quantitative real-time polymerase chain reaction revealed the gene expression of both nitrilases in maize kernels where high concentrations of IAA are synthesized tryptophan dependently. Nitrilase protein and endogenous nitrilase activity are present in maize kernels together with the substrate IAN. These results suggest a role for ZmNIT2 in auxin biosynthesis.  相似文献   

2.
Gibberellin Induced Changes in Diffusible Auxins from Savoy Cabbage   总被引:1,自引:0,他引:1  
Diffusates from apices of young plants of savoy cabbage treated with gibberellie acid (GA) and apices of control plants have been examined with respect to their content of Indole auxins. Three indole Compounds were detected and identified on the basis of their chromatographic characteristics in several systems. These compounds were: glucoubrassicin, indole-3-acetic acid (IAA) and indole-3-acetonitrile (IAN). An effect of GA on the total auxin activity of the diffusate was noted 90 hours after treatment, while an increase in stem height occurred 48 hours later. This increase in auxin effect of the entire diffusates was shown bv chromogenic development and bioassay of chromatograms of diffusates to be a result of an increase in level of the IAA content. A concomitant decrease in I the glucobrassicin content was indicated. Since GA was found to have no effect on the enzymatic conversion of tryptophan or tryptamine to IAA, it is proposed that the effect of GA is on the conversion of glucobrassicin to IAA.  相似文献   

3.
Indole-3-acetaldoxime (IAOx) is a branch point compound of tryptophan (Trp) metabolism in glucosinolate-producing species such as Arabidopsis, serving as a precursor to indole-glucosinolates (IGs), the defense compound camalexin, indole-3-acetonitrile (IAN) and indole-3-acetic acid (IAA). We synthesized [2H5] and [13C1015N2]IAOx and [13C6], [2H5] and [2′,2′-2H2]IAN in order to quantify endogenous IAOx and IAN in Arabidopsis and tobacco, a non-IG producing species. We found that side chain-labeled [2′,2′-2H2]IAN overestimated the amount of IAN by 2-fold compared to when [2H5]IAN was used as internal standard, presumably due to protium-deuterium exchange within the internal standard during extraction of plant tissue. We also determined that [13C1]IAN underestimated the amount of IAN when the ratio of [13C1]IAN standard to endogenous IAN was greater than five to one, whereas either [2H5]IAN or [13C6]IAN showed a linear relationship with endogenous IAN over a broader range of concentrations. Transgenic tobacco vector control lines did not have detectable levels of IAOx or IAN (limit of detection ∼ 100 pg/g fr. wt), while lines expressing either the IAOx-producing CYP79B2 or CYP79B3 genes from Arabidopsis under CaMV 35S promoter control accumulated IAOx in the range of 1-9 μg/g fr. wt. IAN levels in these lines ranged from 0.6 to 6.7 μg/g fr. wt, and IAA levels were ∼9-14-fold above levels in control lines. An Arabidopsis line expressing the same CYP79B2 overexpression construct accumulated IAOx in two of three lines measured (∼200 and 400 ng/g fr. wt) and accumulated IAN in all three lines. IAN is proposed to be a metabolite of IAOx or an enzymatic breakdown product of IGs induced upon tissue damage. Since tobacco does not produce detectable IGs, the tobacco data are consistent with IAN being a metabolite of IAOx. IAOx and IAN were also examined in the Arabidopsis activation tagged yucca mutant, and no accumulation of IAOx was found above the limits of detection but accumulation of IAN (3-fold above wt) occurred. The latter was surprising in light of recent reports that rule out IAOx and IAN as intermediates in YUCCA-mediated IAA synthesis.  相似文献   

4.
Nitrilase (nitrile aminohydrolase, EC 3.5.5.1) catalyzes the hydrolysis of indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). Arabidopsis thaliana genome has four nitrilase genes (NIT1, NIT2, NIT3 and NIT4). Three (NIT1, NIT2 and NIT3) of the four genes have high similarity. We have cloned two NIT4 homologs (TNIT4A and TNIT4B) from tobacco (Nicotiana tabacum). Genomic Southern hybridization, among other experiments, strongly suggests that tobacco has NIT4 homologs but not NIT1 to NIT3 homologs. Introduction of Arabidopsis NIT2 into tobacco conferred IAN-mediated growth inhibition, probably due to hydrolysis of IAN to IAA, while ectopic expression of TNIT4A had little effect on the sensitivity of transgenic plants to IAN. Nitrilase activity of TNIT4 proteins is discussed.  相似文献   

5.
Plants can regulate levels of the auxin indole-3-acetic acid (IAA) by conjugation to amino acids or sugars, and subsequent hydrolysis of these conjugates to release active IAA. These less active auxin conjugates constitute the majority of IAA in plants. We isolated the Arabidopsis ilr2-1 mutant as a recessive IAA-leucine resistant mutant that retains wild-type sensitivity to free IAA. ilr2-1 is also defective in lateral root formation and primary root elongation. In addition, ilr2-1 is resistant to manganese- and cobalt-mediated inhibition of root elongation, and microsomal preparations from the ilr2-1 mutant exhibit enhanced ATP-dependent manganese transport. We used a map-based positional approach to clone the ILR2 gene, which encodes a novel protein with no predicted membrane-spanning domains that is polymorphic among Arabidopsis accessions. Our results demonstrate that ILR2 modulates a metal transporter, providing a novel link between auxin conjugate metabolism and metal homeostasis.  相似文献   

6.
J Normanly  P Grisafi  G R Fink    B Bartel 《The Plant cell》1997,9(10):1781-1790
Indole-3-acetonitrile (IAN) is a candidate precursor of the plant growth hormone indole-3-acetic acid (IAA). We demonstrated that IAN has auxinlike effects on Arabidopsis seedlings and that exogenous IAN is converted to IAA in vivo. We isolated mutants with reduced sensitivity to IAN that remained sensitive to IAA. These mutants were recessive and fell into a single complementation group that mapped to chromosome 3, within 0.5 centimorgans of a cluster of three nitrilase-encoding genes, NIT1, NIT2, and NIT3. Each of the three mutants contained a single base change in the coding region of the NIT1 gene, and the expression pattern of NIT1 is consistent with the IAN insensitivity observed in the nit1 mutant alleles. The half-life of IAN and levels of IAA and IAN were unchanged in the nit1 mutant, confirming that Arabidopsis has other functional nitrilases. Overexpressing NIT2 in transgenic Arabidopsis caused increased sensitivity to IAN and faster turnover of exogenous IAN in vivo.  相似文献   

7.
Liu X  Cohen JD  Gardner G 《Plant physiology》2011,157(2):891-904
In plants, light is an important environmental signal that induces photomorphogenesis and interacts with endogenous signals, including hormones. We found that light increased polar auxin transport in dark-grown Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) hypocotyls. In tomato, this increase was induced by low-fluence red or blue light followed by 1 d of darkness. It was reduced in phyA, phyB1, and phyB2 tomato mutants and was reversed by far-red light applied immediately after the red or blue light exposure, suggesting that phytochrome is involved in this response. We further found that the free indole-3-acetic acid (IAA) level in hypocotyl regions below the hook was increased by red light, while the level of conjugated IAA was unchanged. Analysis of IAA synthesized from [13C]indole or [13C]tryptophan (Trp) revealed that both Trp-dependent and Trp-independent IAA biosynthesis were increased by low-fluence red light in the top section (meristem, cotyledons, and hook), and the Trp-independent pathway appears to become the primary route for IAA biosynthesis after red light exposure. IAA biosynthesis in tissues below the top section was not affected by red light, suggesting that the increase of free IAA in this region was due to increased transport of IAA from above. Our study provides a comprehensive view of light effects on the transport and biosynthesis of IAA, showing that red light increases both IAA biosynthesis in the top section and polar auxin transport in hypocotyls, leading to unchanged free IAA levels in the top section and increased free IAA levels in the lower hypocotyl regions.  相似文献   

8.
Auxin: regulation, action, and interaction   总被引:48,自引:0,他引:48  
  相似文献   

9.
Bound auxin metabolism in cultured crown-gall tissues of tobacco   总被引:1,自引:1,他引:0  
Bound auxin metabolism in cultured crown-gall tumor cells and pith callus of tobacco was examined by feeding radiolabeled auxins and auxin conjugates. In all tissues fed [14C]indoleacetic acid (IAA), at least one-third of the IAA was decarboxylated, and most of the remaining radiolabel occurred in a compound(s) which did not release IAA with alkaline hydrolysis. In cells transformed by the A6 strain of Agrobacterium tumefaciens, the only detectable IAA conjugate was indole-3-acetylaspartic acid (IAAsp), whereas cells transformed by the gene 2 mutant strain A66 produced an unidentified amide conjugate but no IAAsp. By contrast, cells fed [14C]naphthaleneacetic acid (NAA) accumulated several amide and ester conjugates. The major NAA metabolite in A6-transformed cells was naphthaleneacetylaspartic acid (NAAsp), whereas the major metabolites in A66-transformed cells were NAA esters. In addition, A66-transformed cells produced an amide conjugate of NAA which was not found in A6-transformed cells and which showed chromatographic properties similar to the unknown IAA conjugate. Pith callus fed [14C] NAA differed from both tumor lines in that it preferentially accumulated amide conjugates other than NAAsp. Differences in the accumulation of IAA and NAA conjugates were attributed in part to the high capacity of tobacco cells to oxidize IAA and in part to the specificity of bound auxin hydrolases. All tissues readily metabolized IAAsp and indole-3-acetyl-myo-inositol, but hydrolyzed NAAsp very slowly. Indirect evidence is provided which suggests that ester conjugates of NAA are poorly hydrolyzed as well. Analysis of tissues fed [14C]NAA together with high concentrations of unlabeled IAA or NAA indicates that tissue-specific differences in NAA metabolism were not the result of variation in endogenous auxin levels. Our results support the view that bound auxin hydrolysis is highly specific and an important factor controlling bound auxin accumulation.  相似文献   

10.
Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.  相似文献   

11.
Local concentration gradients of the plant growth regulator auxin (indole-3-acetic acid [IAA]) are thought to instruct the positioning of organ primordia and stem cell niches and to direct cell division, expansion, and differentiation. High-resolution measurements of endogenous IAA concentrations in support of the gradient hypothesis are required to substantiate this hypothesis. Here, we introduce fluorescence-activated cell sorting of green fluorescent protein–marked cell types combined with highly sensitive mass spectrometry methods as a novel means for analyses of IAA distribution and metabolism at cellular resolution. Our results reveal the presence of IAA concentration gradients within the Arabidopsis thaliana root tip with a distinct maximum in the organizing quiescent center of the root apex. We also demonstrate that the root apex provides an important source of IAA and that cells of all types display a high synthesis capacity, suggesting a substantial contribution of local biosynthesis to auxin homeostasis in the root tip. Our results indicate that local biosynthesis and polar transport combine to produce auxin gradients and maxima in the root tip.  相似文献   

12.
Liu X  Barkawi L  Gardner G  Cohen JD 《Plant physiology》2012,158(4):1988-2000
The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling.  相似文献   

13.
14.
We previously reported that exogenous application of auxin to Arabidopsis seedlings resulted in downregulation of indole-3-acetic acid (IAA) biosynthesis genes in a feedback manner. In this study, we investigated the involvement of the SCFTIR1/AFB-mediated signaling pathway in feedback regulation of the indole-3-pyruvic acid-mediated auxin biosynthesis pathway in Arabidopsis. Application of PEO-IAA, an inhibitor of the IAA signal transduction pathway, to wild-type seedlings resulted in increased endogenous IAA levels in roots. Endogenous IAA levels in the auxin-signaling mutants axr2-1, axr3-3, and tir1-1afb1-1afb2-1afb3-1 also increased. Furthermore, YUCCA (YUC) gene expression was repressed in response to auxin treatment, and expression of YUC7 and YUC8 increased in response to PEO-IAA treatment. YUC genes were also induced in auxin-signaling mutants but repressed in TIR1-overexpression lines. These observations suggest that the endogenous IAA levels are regulated by auxin biosynthesis in a feedback manner, and the Aux/IAA and SCFTIR1/AFB-mediated auxin-signaling pathway regulates the expression of YUC genes.  相似文献   

15.
Polar transport of the auxin indole-3-butyric acid (IBA) has recently been shown to occur in Arabidopsis (Arabidopis thaliana) seedlings, yet the physiological importance of this process has yet to be fully resolved. Here we describe the first demonstration of altered IBA transport in an Arabidopsis mutant, and show that the resistant to IBA (rib1) mutation results in alterations in growth, development, and response to exogenous auxin consistent with an important physiological role for IBA transport. Both hypocotyl and root IBA basipetal transport are decreased in rib1 and root acropetal IBA transport is increased. While indole-3-acetic acid (IAA) transport levels are not different in rib1 compared to wild type, root acropetal IAA transport is insensitive to the IAA efflux inhibitor naphthylphthalamic acid in rib1, as is the dependent physiological process of lateral root formation. These observed changes in IBA transport are accompanied by altered rib1 phenotypes. Previously, rib1 roots were shown to be less sensitive to growth inhibition by IBA, but to have a wild-type response to IAA in root elongation. rib1 is also less sensitive to IBA in stimulation of lateral root formation and in hypocotyl elongation under most, but not all, light and sucrose conditions. rib1 has wild-type responses to IAA, except under one set of conditions, low light and 1.5% sucrose, in which both hypocotyl elongation and lateral root formation show altered IAA response. Taken together, our results support a model in which endogenous IBA influences wild-type seedling morphology. Modifications in IBA distribution in seedlings affect hypocotyl and root elongation, as well as lateral root formation.  相似文献   

16.
17.
The formation and hydrolysis of indole-3-acetic acid (IAA) conjugates represent a potentially important means for plants to regulate IAA levels and thereby auxin responses. The identification and characterization of mutants defective in these processes is advancing the understanding of auxin regulation and response. Here we report the isolation and characterization of the Arabidopsis iar4 mutant, which has reduced sensitivity to several IAA-amino acid conjugates. iar4 is less sensitive to a synthetic auxin and low concentrations of an ethylene precursor but responds to free IAA and other hormones tested similarly to wild type. The gene defective in iar4 encodes a homolog of the E1alpha-subunit of mitochondrial pyruvate dehydrogenase, which converts pyruvate to acetyl-coenzyme A. We did not detect glycolysis or Krebs-cycle-related defects in the iar4 mutant, and a T-DNA insertion in the IAR4 coding sequence conferred similar phenotypes as the originally identified missense allele. In contrast, we found that disruption of the previously described mitochondrial pyruvate dehydrogenase E1alpha-subunit does not alter IAA-Ala responsiveness or confer any obvious phenotypes. It is possible that IAR4 acts in the conversion of indole-3-pyruvate to indole-3-acetyl-coenzyme A, which is a potential precursor of IAA and IAA conjugates.  相似文献   

18.
Aciculosporium take (Ascomycota; Clavicipitaceae), causes the witches' broom disease in bamboo, particularly Phyllostachys bambusoides. Since it was observed that endogenous indole-3-acetic acid is reduced in the twigs of the diseased bamboo, the symptoms (bushy appearance) may be induced by reduction in auxin levels. Furthermore, two indolic compounds accumulated in diseased twigs, these being identified as N-p-coumaroylserotonin and N-feruloylserotonin by LC-MS, 1H NMR and 13C NMR spectroscopic analyses. N-p-Coumaroylserotonin possesses antifungal activity against A. take.  相似文献   

19.
H. Schraudolf  H. Weber 《Planta》1969,88(2):136-143
Summary Indole auxin synthesis during enzymatic hydrolysis of glucobrassicin by myrosinase proved to be strictly dependent on pH. Neither IAN nor other indole compounds with auxin activity are synthesized at pH values higher than 5.2. An in vivo function of the indole glucosinolates as auxin precursors in Cruciferae is therefore of low probability.  相似文献   

20.
Summary Nectria galligena is grown in synthetic medium. Experiments are carried out with suspensions of washed mycelium, incubated and stirred with indole-3-acetic acid (IAA) or IAA 2-14C. Auxin degradation is quicker with either acid pH or young mycelium. Two indolic compounds are identified in the course of this metabolism: indole-3-aldehyde (IAld) and indole-3-carboxylic acid (ICA).A correlation is supposed to exist between the increase of auxin contained in cultures of Nectria and IAA catabolism as it lessens with age and alcalin pH.
Dans le texte les abréviations suivantes seront employées IAA Acide Indolyl-3-acétique - IAld Indolyl-3-aldéhyde - ICA Acide Indolyl-3-carboxylique - DPH 2,4-dinitrophénylhydrazine - DMCA Paradiméthylaminocinnamaldéhyde  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号