首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
We report here the role of one of the less studied members of the family of suppressors of cytokine signaling (SOCS), namely SOCS-7, in cytokine signaling. We demonstrate that SOCS-7 inhibits prolactin (PRL), growth hormone (GH), or leptin (LEP) signaling mediated through STAT3 and STAT5 in a dose-dependent manner. SOCS-7 also attenuated STAT3 and STAT5 signaling induced by overexpression of JH1, the catalytic subdomain of JAK2. Since SOCS-7 interacted with phosphorylated STAT3 or STAT5, we assumed that SOCS-7 acts at the level of STAT proteins. Indeed, we showed that SOCS-7 inhibits PRL- and leptin-induced STAT5 and STAT3 phosphorylation and prevented the nuclear translocation of activated STAT3. Taken together, our results indicate that SOCS-7 is a physiological dysregulator of PRL, leptin, and probably also GH signaling and that its mode of action is a novel variation of SOCS protein inhibition of cytokine-inducible STAT-mediated signal transduction.  相似文献   

7.
8.
Growth hormone (GH)-inducible suppressors of cytokine signaling (SOCS/CIS proteins) inhibit GH receptor (GHR) signaling to STAT5b via phosphotyrosine-dependent binding interactions with the tyrosine kinase JAK2 (SOCS-1) and/or the cytoplasmic tail of GHR (CIS and SOCS-3). Presently, we investigate the mechanism of CIS inhibition and CIS's role in down-regulating GHR-JAK2 signaling to STAT5b in cells exposed to GH continuously. CIS is shown to inhibit GHR-JAK2 signaling by two distinct mechanisms: by a partial inhibition that is decreased at elevated STAT5b levels and may involve competition between CIS and STAT5b for common GHR cytoplasmic tail phosphotyrosine-binding sites; and by a time-dependent inhibition, not seen with SOCS-1 or SOCS-3, that involves proteasome action. Investigation of the latter mechanism revealed that GH stimulates degradation of CIS, but not SOCS-3. The proteasome inhibitor MG132 blocked this protein degradation and also blocked the inhibitory action of CIS, but not that of SOCS-1 or SOCS-3, on STAT5b signaling. Proteasome-dependent degradation of CIS, most likely in the form of a (GHR-JAK2)-CIS complex, is therefore proposed to be an important step in the time-dependent CIS inhibition mechanism. Finally, the down-regulation of GHR-JAK2 signaling to STAT5b seen in continuous GH-treated cells could be prevented by treatment of cells with the proteasome inhibitor MG132 or by expression of CIS-R107K, a selective, dominant-negative inhibitor of CIS activity. These findings lead us to propose that the cytokine signaling inhibitor CIS is a key mediator of the STAT5b desensitization response seen in cells and tissues exposed to GH chronically, such as adult female rat liver.  相似文献   

9.
10.
11.
12.
13.
Suppressors of cytokine signaling (SOCS) typically limit cytokine receptor signaling via the JAK-STAT pathway. Considerable evidence demonstrates that SOCS2 limits growth hormone (GH) action on body and organ growth. Biochemical evidence that SOCS2 binds to the IGF-I receptor (IGF-IR) supports the novel possibility that SOCS2 limits IGF-I action. The current study tested the hypothesis that SOCS2 normally limits basal or IGF-I-induced intestinal growth and limits IGF-IR signaling in intestinal epithelial cells. Intestinal growth was assessed in mice homozygous for SOCS2 gene deletion (SOCS2 null) and wild-type (WT) littermates at different ages and in response to infused IGF-I or vehicle or EGF and vehicle. The effects of SOCS2 on IGF-IR signaling were examined in ex vivo cultures of SOCS2 null and WT intestine and Caco-2 cells. Compared with WT, SOCS2 null mice showed significantly enhanced small intestine and colon growth, mucosal mass, and crypt cell proliferation and decreases in radiation-induced crypt apoptosis in jejunum. SOCS2 null mice showed significantly greater growth responses to IGF-I in small intestine and colon. IGF-I-stimulated activation of IGF-IR and downstream signaling intermediates were enhanced in the intestine of SOCS2 null mice and were decreased by SOCS2 overexpression in Caco-2 cells. SOCS2 bound directly to the endogenous IGF-IR in Caco-2 cells. The intestine of SOCS2 null mice also showed enhanced growth responses to infused EGF. We conclude that SOCS2 normally limits basal and IGF-I- and EGF-induced intestinal growth in vivo and has novel inhibitory effects on the IGF-IR tyrosine kinase pathway in intestinal epithelial cells.  相似文献   

14.
Suppressor of cytokine signaling-1 (SOCS-1) is a cytokine-inducible intracellular protein that functions to negatively regulate cytokine signal transduction pathways. Studies in vitro have shown that constitutive overexpression of SOCS-1 inhibits signaling in response to a range of cytokines, including interferons (IFN). Mice lacking SOCS-1 die from a complex disease characterized by liver degeneration and massive inflammation. Whereas there is clear evidence of increased IFNgamma signaling in SOCS-1(-/-) mice, it is unclear to what extent this is due to increased IFNgamma levels or to increased IFNgamma sensitivity. Here we have used SOCS-1(-/-) IFNgamma(-/-) mice, which remain healthy and produce no endogenous IFNgamma, to demonstrate that in vitro and in vivo hepatocytes lacking SOCS-1 exhibit a prolonged response to IFNgamma and that this correlates with a dramatically increased sensitivity to the toxic effects of IFNgamma in vivo. Thus, SOCS-1 is required for the timely attenuation of IFNgamma signaling in vivo.  相似文献   

15.
16.
Suppressors of cytokine signaling (SOCS) are cytokine-inducible proteins that modulate receptor signaling via tyrosine kinase pathways. We investigate the role of SOCS in renal disease, analyzing whether SOCS regulate IgG receptor (FcgammaR) signal pathways. In experimental models of immune complex (IC) glomerulonephritis, the renal expression of SOCS family genes, mainly SOCS-3, significantly increased, in parallel with proteinuria and renal lesions, and the proteins were localized in glomeruli and tubulointerstitium. Induction of nephritis in mice with a deficiency in the FcgammaR gamma-chain (gamma(-/-) mice) resulted in a decrease in the renal expression of SOCS-3 and SOCS-1. Moreover, blockade of FcgammaR by Fc fragment administration in rats with ongoing nephritis selectively inhibited SOCS-3 and SOCS-1, without affecting cytokine-inducible Src homology 2-containing protein and SOCS-2. In cultured human mesangial cells (MC) and monocytes, IC caused a rapid and transient induction of SOCS-3 expression. Similar kinetics was observed for SOCS-1, whereas SOCS-2 expression was very low. MC from gamma(-/-) mice failed to respond to IC activation, confirming the participation of FcgammaR. Interestingly, IC induced tyrosine phosphorylation of SOCS-3 and Tec tyrosine kinase, and both proteins coprecipitated in lysates from IC-stimulated MC, suggesting intracellular association. IC also activated STAT pathway in MC, which was suppressed by SOCS overexpression, mainly SOCS-3. In SOCS-3 knockdown studies, specific antisense oligonucleotides inhibited mesangial SOCS-3 expression, leading to an increase in the IC-induced STAT activation. Our results indicate that SOCS may play a regulatory role in FcgammaR signaling, and implicate SOCS as important modulators of cell activation during renal inflammation.  相似文献   

17.
Growth hormone (GH) and IGF-I play important roles in wound healing during intestinal injury and inflammation, but there is also indirect evidence that locally expressed IGF-I may act to induce excessive collagen deposition, which can lead to intestinal fibrosis. Factors that dictate the balance between normal wound healing and excessive healing responses are unknown. Using RNase protection assay and in situ hybridization, we determined whether GH and/or IGF-I increase type I collagen deposition in the intestine of rats fed by total parenteral nutrition (TPN), a feeding modality used for many patients following intestinal surgery and resection. We also used an in vitro model system to confirm our in vivo effects and to directly evaluate the relative potency of GH and IGF-I on DNA synthesis and collagen deposition in intestinal myofibroblasts. Both GH and IGF-I stimulated collagen production in vivo and in vitro, and IGF-I, but not GH, stimulated DNA synthesis in vitro. In collagen production, GH was less potent than IGF-I. Suppressors of cytokine signaling (SOC) are cytokine-inducible proteins that negatively feedback to inhibit the actions of cytokines and we recently found that GH selectively upregulates SOC-2 in the intestine of TPN-fed rats. We examined whether SOC-2 may be responsible for the difference in magnitude of action of GH and IGF-I on collagen accumulation. GH, but not IGF-I, induced SOC-2 in isolated myofibroblasts, and overexpression of SOC-2 led to a suppression of GH- and IGF-I-induced collagen accumulation. SOC-2 null mice infused with IGF-I showed greater collagen gene expression compared with wild-type (WT) mice. Myofibroblasts isolated from SOC-2 null mice showed increased IGF-I-stimulated DNA synthesis compared with WT cells. Taken together, these findings suggest that SOC-2 induced by GH may play an important role in suppressing collagen accumulation and mesenchymal cell proliferation induced by GH or GH-induced IGF-I, providing a mechanism for the differing potencies of GH and IGF-I on intestinal mesenchyme and collagen synthesis.  相似文献   

18.
Protein tyrosine phosphatase-1B (PTP-1B) attenuates insulin, PDGF, EGF, and IGF-I signaling by dephosphorylating tyrosine residues located in the tyrosine kinase domain of the corresponding receptors. More recently, PTP-1B was shown to modulate the action of cytokine signaling via the nonreceptor tyrosine kinase JAK2. Transmission of the growth hormone (GH) signal also depends on JAK2, raising the possibility that PTP-1B modulates GH action. Consistent with this hypothesis, GH increased the abundance of tyrosine-phosphorylated JAK2 associated with a catalytically inactive mutant of PTP-1B. GH-induced JAK2 phosphorylation was greater in knockout (KO) than in wild-type (WT) PTP-1B embryonic fibroblasts and resulted in increased tyrosine phosphorylation of STAT3 and STAT5, while overexpression of PTP-1B reduced the GH-mediated activation of the acid-labile subunit gene. To evaluate the in vivo relevance of these observations, mice were injected with GH under fed and fasted conditions. As expected, tyrosine phosphorylation of JAK2 and STAT5 occurred readily in the livers of fed WT mice and was almost completely abolished during fasting. In contrast, resistance to the action of GH was severely impaired in the livers of fasted KO mice. These results indicate that PTP-1B regulates GH signaling by reducing the extent of JAK2 phosphorylation and suggest that PTP-1B is essential for limiting the action of GH during metabolic stress such as fasting.  相似文献   

19.
20.
SOCS-6 is a member of the suppressor of cytokine signaling (SOCS) family of proteins (SOCS-1 to SOCS-7 and CIS) which each contain a central SH2 domain and a carboxyl-terminal SOCS box. SOCS-1, SOCS-2, SOCS-3, and CIS act to negatively regulate cytokine-induced signaling pathways; however, the actions of SOCS-4, SOCS-5, SOCS-6, and SOCS-7 remain less clear. Here we have used both biochemical and genetic approaches to examine the action of SOCS-6. We found that SOCS-6 and SOCS-7 are expressed ubiquitously in murine tissues. Like other SOCS family members, SOCS-6 binds to elongins B and C through its SOCS box, suggesting that it might act as an E3 ubiquitin ligase that targets proteins bound to its SH2 domain for ubiquitination and proteasomal degradation. We investigated the binding specificity of the SOCS-6 and SOCS-7 SH2 domains and found that they preferentially bound to phosphopeptides containing a valine in the phosphotyrosine (pY) +1 position and a hydrophobic residue in the pY +2 and pY +3 positions. In addition, these SH2 domains interacted with a protein complex consisting of insulin receptor substrate 4 (IRS-4), IRS-2, and the p85 regulatory subunit of phosphatidylinositol 3-kinase. To investigate the physiological role of SOCS-6, we generated mice lacking the SOCS-6 gene. SOCS-6(-/-) mice were born in a normal Mendelian ratio, were fertile, developed normally, and did not exhibit defects in hematopoiesis or glucose homeostasis. However, both male and female SOCS-6(-/-) mice weighed approximately 10% less than wild-type littermates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号