首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Burkholderia glumae is the primary causal agent of bacterial panicle blight of rice. In this study, 11 naturally avirulent and nine virulent strains of B. glumae native to the southern United States were characterized in terms of virulence in rice and onion, toxofalvin production, antifungal activity, pigmentation and genomic structure. Virulence of B. glumae strains on rice panicles was highly correlated to virulence on onion bulb scales, suggesting that onion bulb can be a convenient alternative host system to efficiently determine the virulence of B. glumae strains. Production of toxoflavin, the phytotoxin that functions as a major virulence factor, was closely associated with the virulence phenotypes of B. glumae strains in rice. Some strains of B. glumae showed various levels of antifungal activity against Rhizoctonia solani, the causal agent of sheath blight, and pigmentation phenotypes on casamino acid-peptone-glucose (CPG) agar plates regardless of their virulence traits. Purple and yellow-green pigments were partially purified from a pigmenting strain of B. glumae, 411gr-6, and the purple pigment fraction showed a strong antifungal activity against Collectotrichum orbiculare. Genetic variations were detected among the B. glumae strains from DNA fingerprinting analyses by repetitive element sequence-based PCR (rep-PCR) for BOX-A1R-based repetitive extragenic palindromic (BOX) or enterobacterial repetitive intergenic consensus (ERIC) sequences of bacteria; and close genetic relatedness among virulent but pigment-deficient strains were revealed by clustering analyses of DNA fingerprints from BOX-and ERIC-PCR.  相似文献   

2.
Burkholderia glumae is an emerging rice pathogen in several areas around the world. Closely related Burkholderia species are important opportunistic human pathogens for specific groups of patients, such as patients with cystic fibrosis and patients with chronic granulomatous disease. Here we report that the first clinical isolate of B. glumae, strain AU6208, has retained its capability to be very pathogenic to rice. As previously reported for rice isolate B. glumae BGR1 (and also for the clinical isolate AU6208), TofI or TofR acyl homoserine lactone (AHL) quorum sensing played a pivotal role in rice virulence. We report that AHL quorum sensing in B. glumae AU6208 regulates secreted LipA lipase and toxoflavin, the phytotoxin produced by B. glumae. B. glumae AU6208 lipA mutants were no longer pathogenic to rice, indicating that the lipase is an important virulence factor. It was also established that type strain B. glumae ATCC 33617 did not produce toxoflavin and lipase and was nonpathogenic to rice. It was determined that in strain ATCC 33617 the LuxR family quorum-sensing sensor/regulator TofR was inactive. Introducing the tofR gene of B. glumae AU6208 in strain ATCC 33617 restored its ability to produce toxoflavin and the LipA lipase. This study extends the role of AHL quorum sensing in rice pathogenicity through the regulation of a lipase which was demonstrated to be a virulence factor. It is the first report of a clinical B. glumae isolate retaining strong rice pathogenicity and finally determined that B. glumae can undergo phenotypic conversion through a spontaneous mutation in the tofR regulator.  相似文献   

3.
4.
Burkholderia glumae is an emerging seed-borne rice pathogen in many areas around the world. Previous studies have demonstrated that B. glumae produces two major virulence factors: the phytotoxin toxoflavin and a secreted lipase. This synthesis of both of these factors is regulated by an N-acyl homoserine lactone (AHL)-dependent, cell-density-dependent quorum-sensing regulation system. This study reports the production and secretion of two highly similar endo-polygalacturonases (designated PehA and PehB) by B. glumae. The two enzymes were purified to homogeneity and the corresponding genetic determinants were identified and characterized. When either polygalacturonase gene was inactivated, B. glumae retained rice virulence comparable to that of the wild-type parent strain. Furthermore, the role of AHL-dependent quorum sensing and of plant cell wall degradation compounds in their regulation was investigated.  相似文献   

5.
Many bacterial species are known to thrive within plants. Among these bacteria, a group referred to as endophytes provide beneficial effects to the host plants by the promotion of plant growth and the suppression of plant pathogens. Among 44 putative endophytic isolates isolated from surface-sterilized rice roots, Burkholderia sp. KJ006 was selected for further study because of a lack of pathogenicity to rice, a broad spectrum of antifungal properties, and the presence of the nifH gene, which is an indicator for nitrogen fixation. In an attempt to control Burkholderia glumae, a casual pathogen of seedling rot and grain rot of rice, an N-acyl-homoserine lactonase (aiiA) gene from Bacillus thuringiensis was introduced into Burkholderia sp. KJ006 given that the major virulence factor of Burkholderia glumae is controlled in a population-dependent manner (quorum sensing). The engineered strain KJ006 (pKPE-aiiA) inhibited production of quorum-sensing signals by Burkholderia glumae in vitro and reduced the disease incidence of rice seedling rot caused by Burkholderia glumae in situ. Our results indicate the possibility that a bacterial endophyte transformed with the aiiA gene can be used as a novel biological control agent against pathogenic Burkholderia glumae that are known to occupy the same ecological niche.  相似文献   

6.
Burkholderia glumae is the major causal agent of bacterial panicle blight of rice, a growing disease problem in global rice production. To better understand its genome-scale characteristics, the genome of the highly virulent B. glumae strain 336gr-1 isolated from Louisiana, USA was sequenced using the Illumina Genome Analyser II system. De novo assembled 336gr-1 contigs were aligned and compared with the previously sequenced genome of B. glumae strain BGR1, which was isolated from an infected rice plant in South Korea. Comparative analysis of the whole genomes of B. glumae 336gr-1 and B. glumae BGR1 revealed numerous unique genomic regions present only in one of the two strains. These unique regions contained accessory genes including mobile elements and phage-related genes, and some of the unique regions in B. glumae BGR1 corresponded to predicted genomic islands. In contrast, little variation was observed in known and potential virulence genes between the two genomes. The considerable amount of plasticity largely based on accessory genes and genome islands observed from the comparison of the genomes of these two strains of B. glumae may explain the versatility of this bacterial species in various environmental conditions and geographic locations.  相似文献   

7.
Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the urgent need to understand the mechanism of resistance to KSM. Here, we identified a novel gene, aac(2')-IIa, encoding a KSM 2'-N-acetyltransferase from both KSM-resistant pathogens but not from KSM-sensitive bacteria. AAC(2')-IIa inactivates KSM, although it reveals no cross-resistance to other aminoglycosides. The aac(2')-IIa gene from B. glumae strain 5091 was identified within the IncP genomic island inserted into the bacterial chromosome, indicating the acquisition of this gene by horizontal gene transfer. Although excision activity of the IncP island and conjugational gene transfer was not detected under the conditions tested, circular intermediates containing the aac(2')-IIa gene were detected. These results indicate that the aac(2')-IIa gene had been integrated into the IncP island of a donor bacterial species. Molecular detection of the aac(2')-IIa gene could distinguish whether isolates are resistant or susceptible to KSM. This may contribute to the production of uninfected rice seeds and lead to the effective control of these pathogens by KSM.  相似文献   

8.
Hasebe A  Iida S 《Plasmid》2000,44(1):44-53
Three insertion sequences, IS1417, IS1418, and IS1419, were isolated from Burkholderia glumae (formerly Pseudomonas glumae), a gram-negative rice pathogenic bacterium, on the basis of their abilities to activate the expression of the neo gene of the entrap vector pSHI1063. The 1335-bp IS1417 element with 17-bp imperfect terminal inverted repeats was found to be flanked by 5-bp direct repeats of the vector sequence. IS1418 is 865 bp in length and carries 15-bp inverted repeats with a target duplication of 3 bp. The 1215-bp IS1419 sequence is bounded by the 36-bp terminal inverted repeats of the element and 7-bp direct repeats of the vector sequence. IS1417 and IS1418 belong to the IS2 subgroup of the IS3 family and the IS427 subgroup of the IS5 family, respectively, whereas IS1419 does not appear to be a member of any known IS family. Southern blot analysis of DNAs from B. glumae field isolates indicated that those IS elements are widely distributed, but the host range of the three IS elements appears to be limited to B. glumae and some other related species such as B. plantarii. The polymorphisms exhibited in B. glumae isolates suggest that those elements are useful for molecular epidemiological studies of B. glumae infections.  相似文献   

9.
Burkholderia glumae causes bacterial panicle blight of rice, which is an increasingly important disease problem in global rice production. Toxoflavin and lipase are known to be major virulence factors of this pathogen, and their production is dependent on the TofI/TofR quorum-sensing system, which is mediated by N-octanoyl homoserine lactone. Flagellar biogenesis and a type III secretion system are also required for full virulence of B. glumae. Bacterial panicle blight is thought to be caused by seed-borne B. glumae; however, its disease cycle is not fully understood. In spite of its economic importance, neither effective control measures for bacterial panicle blight nor rice varieties showing complete resistance to the disease are currently available. A better understanding of the molecular mechanisms underlying B. glumae virulence and of the rice defence mechanisms against the pathogen would lead to the development of better methods of disease control for bacterial panicle blight. TAXONOMY: Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiaceae; Burkholderia. MICROBIOLOGICAL PROPERTIES: Gram-negative, capsulated, motile, lophotrichous flagella, pectolytic. DISEASE SYMPTOMS: Aborted seed, empty grains as a result of failure of grain filling, brown spots on panicles, seedling rot. DISEASE CONTROL: Seed sterilization, planting partially resistant lines (no completely resistant line is available). KNOWN VIRULENCE FACTORS: Toxoflavin, lipase, type III effectors.  相似文献   

10.
Oxolinic acid (OA), a quinolone, inhibits the activity of DNA gyrase composed of GyrA and GyrB and shows antibacterial activity against Burkholderia glumae. Since B. glumae causes bacterial seedling rot and grain rot of rice, both of which are devastating diseases, the emergence of OA-resistant bacteria has important implications on rice cultivation in Japan. Based on the MIC of OA, 35 B. glumae field isolates isolated from rice seedlings grown from OA-treated seeds in Japan were divided into sensitive isolates (OSs; 0.5 microg/ml), moderately resistant isolates (MRs; 50 microg/ml), and highly resistant isolates (HRs; > or =100 microg/ml). Recombination with gyrA of an OS, Pg-10, led MRs and HRs to become OA susceptible, suggesting that gyrA mutations are involved in the OA resistance of field isolates. The amino acid at position 83 in the GyrA of all OSs was Ser, but in all MRs and HRs it was Arg and Ile, respectively. Ser83Arg and Ser83Ile substitutions in the GyrA of an OS, Pg-10, resulted in moderate and high OA resistance, respectively. Moreover, Arg83Ser and Ile83Ser substitutions in the GyrA of MRs and HRs, respectively, resulted in susceptibility to OA. These results suggest that Ser83Arg and Ser83Ile substitutions in GyrA are commonly responsible for resistance to OA in B. glumae field isolates.  相似文献   

11.
Burkholderia glumae is the major causal agent of bacterial panicle blight of rice, which is a growing disease problem for rice growers worldwide. In our previous study, some B. glumae strains showed pigmentation phenotypes producing at least two (yellow–green and purple) pigment compounds in casein–peptone–glucose agar medium. The B. glumae strains LSUPB114 and LSUPB116 are pigment‐deficient mutant derivatives of the virulent and pigment‐proficient strain 411gr‐6, having mini‐Tn5gus insertions in aroA encoding 3‐phosphoshikimate 1‐carboxyvinyltransferase and aroB encoding 3‐dehydroquinate synthase, respectively. Both enzymes are known to be involved in the shikimate pathway, which leads to the synthesis of aromatic amino acids. Here, we demonstrate that aroA and aroB are required for normal virulence in rice and onion, growth in M9 minimal medium and tolerance to UV light, but are dispensable for the production of the phytotoxin toxoflavin. These results suggest that the shikimate pathway is involved in bacterial pathogenesis by B. glumae without a significant role in the production of toxoflavin, a major virulence factor of this pathogen.  相似文献   

12.
Oxolinic acid (OA) resistance in field isolates of Burkholderia glumae, a causal agent of bacterial grain rot, is dependent on an amino acid substitution at position 83 in GyrA (GyrA83). In the present study, among spontaneous in vitro mutants from the OA-sensitive B. glumae strain Pg-10, we selected OA-resistant mutants that emerged at a rate of 5.7 x 10(-10). Nucleotide sequence analysis of the quinolone resistance-determining region in GyrA showed that Gly81Cys, Gly81Asp, Asp82Gly, Ser83Arg, Asp87Gly, and Asp87Asn are observed in these OA-resistant mutants. The introduction of each amino acid substitution into Pg-10 resulted in OA resistance, similar to what was observed for mutants with the responsible amino acid substitution. In vitro growth of recombinants with Asp82Gly was delayed significantly compared to that of Pg-10; however, that of the other recombinants did not differ significantly. The inoculation of each recombinant into rice spikelets did not result in disease. In inoculated rice spikelets, recombinants with Ser83Arg grew less than Pg-10 during flowering, and growth of the other recombinants was reduced significantly. On the other hand, the reduced growth of recombinants with Ser83Arg in spikelets was compensated for under OA treatment, resulting in disease. These results suggest that amino acid substitutions in GyrA of B. glumae are implicated in not only OA resistance but also fitness on rice plants. Therefore, GyrA83 substitution is thought to be responsible for OA resistance in B. glumae field isolates.  相似文献   

13.
Burkholderia glumae causes bacterial panicle blight of rice and produces major virulence factors, including toxoflavin, under the control of the quorum-sensing (QS) system mediated by the luxI homolog, tofI, and the luxR homolog, tofR. In this study, a series of markerless deletion mutants of B. glumae for tofI and tofR were generated using the suicide vector system, pKKSacB, for comprehensive characterization of the QS system of this pathogen. Consistent with the previous studies by other research groups, ΔtofI and ΔtofR strains of B. glumae did not produce toxoflavin in Luria-Bertani (LB) broth. However, these mutants produced high levels of toxoflavin when grown in a highly dense bacterial inoculum (∼ 1011 CFU/ml) on solid media, including LB agar and King’s B (KB) agar media. The ΔtofI/ΔtofR strain of B. glumae, LSUPB201, also produced toxoflavin on LB agar medium. These results indicate the presence of previously unknown regulatory pathways for the production of toxoflavin that are independent of tofI and/or tofR. Notably, the conserved open reading frame (locus tag: bglu_2g14480) located in the intergenic region between tofI and tofR was found to be essential for the production of toxoflavin by tofI and tofR mutants on solid media. This novel regulatory factor of B. glumae was named tofM after its homolog, rsaM, which was recently identified as a novel negative regulatory gene for the QS system of another rice pathogenic bacterium, Pseudomonas fuscovaginae. The ΔtofM strain of B. glumae, LSUPB286, produced a less amount of toxoflavin and showed attenuated virulence when compared with its wild type parental strain, 336gr-1, suggesting that tofM plays a positive role in toxoflavin production and virulence. In addition, the observed growth defect of the ΔtofI strain, LSUPB145, was restored by 1 µM N-octanoyl homoserine lactone (C8-HSL).  相似文献   

14.
15.
Burkholderia glumae is an emerging rice pathogen in several areas around the world. Closely related Burkholderia species are important opportunistic human pathogens for specific groups of patients, such as patients with cystic fibrosis and patients with chronic granulomatous disease. Here we report that the first clinical isolate of B. glumae, strain AU6208, has retained its capability to be very pathogenic to rice. As previously reported for rice isolate B. glumae BGR1 (and also for the clinical isolate AU6208), TofI or TofR acyl homoserine lactone (AHL) quorum sensing played a pivotal role in rice virulence. We report that AHL quorum sensing in B. glumae AU6208 regulates secreted LipA lipase and toxoflavin, the phytotoxin produced by B. glumae. B. glumae AU6208 lipA mutants were no longer pathogenic to rice, indicating that the lipase is an important virulence factor. It was also established that type strain B. glumae ATCC 33617 did not produce toxoflavin and lipase and was nonpathogenic to rice. It was determined that in strain ATCC 33617 the LuxR family quorum-sensing sensor/regulator TofR was inactive. Introducing the tofR gene of B. glumae AU6208 in strain ATCC 33617 restored its ability to produce toxoflavin and the LipA lipase. This study extends the role of AHL quorum sensing in rice pathogenicity through the regulation of a lipase which was demonstrated to be a virulence factor. It is the first report of a clinical B. glumae isolate retaining strong rice pathogenicity and finally determined that B. glumae can undergo phenotypic conversion through a spontaneous mutation in the tofR regulator.  相似文献   

16.
Aims:  To study the phenotypic and genetic diversity of culturable bacteria associated with rice seed and to asses the antagonistic and pathogenic potential of the isolated bacteria.
Methods and Results:  Seed of rice cultivar PSBRc14 was collected from farmers' fields of irrigated lowland in southern Luzon, Philippines. Isolations of distinct colonies yielded 498 isolates. Classification of the isolates according to similarities in cellular characteristics, whole-cell fatty acid composition, and colony appearance differentiated 101 morphotype groups. Predominant bacteria were Coryneform spp., Pantoea spp. and Pseudomonas spp. Other bacteria regularly present were Actinomycetes spp., Bacillus pumilus , B. subtilis , Burkholderia glumae , Enterobacter cloacae , Paenibacillus polymyxa , Staphylococcus spp. and Xanthomonas spp. The genetic diversity among isolates was assessed by BOX-PCR fingerprinting of genomic DNA and represented 284 fingerprint types (FPTs). Most FPTs (78%) were not shared among samples, while eight FPTs occurred frequently in the samples. Seven of these FPTs also occurred frequently in a previous collection made from rainfed lowlands of Iloilo island, Philippines. Sixteen per cent of the isolates inhibited in vitro the mycelial growth of the rice pathogens Rhizoctonia solani and Pyricularia grisea , whereas 4% were pathogens identified as Burkholderia glumae , Burkholderia gladioli and Acidovorax avenae ssp. avenae .
Conclusions:  This study reveals a broad morphological and genetic diversity of bacteria present on seed of a single rice cultivar.
Significance and Impact of the Study:  This line of work contributes to a better understanding of the microbial diversity present on rice seed and stresses its importance as a carrier of antagonists and pathogens.  相似文献   

17.

Background

In addition to human and animal diseases, bacteria of the genus Burkholderia can cause plant diseases. The representative species of rice-pathogenic Burkholderia are Burkholderia glumae, B. gladioli, and B. plantarii, which primarily cause grain rot, sheath rot, and seedling blight, respectively, resulting in severe reductions in rice production. Though Burkholderia rice pathogens cause problems in rice-growing countries, comprehensive studies of these rice-pathogenic species aiming to control Burkholderia-mediated diseases are only in the early stages.

Results

We first sequenced the complete genome of B. plantarii ATCC 43733T. Second, we conducted comparative analysis of the newly sequenced B. plantarii ATCC 43733T genome with eleven complete or draft genomes of B. glumae and B. gladioli strains. Furthermore, we compared the genome of three rice Burkholderia pathogens with those of other Burkholderia species such as those found in environmental habitats and those known as animal/human pathogens. These B. glumae, B. gladioli, and B. plantarii strains have unique genes involved in toxoflavin or tropolone toxin production and the clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bacterial immune system. Although the genome of B. plantarii ATCC 43733T has many common features with those of B. glumae and B. gladioli, this B. plantarii strain has several unique features, including quorum sensing and CRISPR/CRISPR-associated protein (Cas) systems.

Conclusions

The complete genome sequence of B. plantarii ATCC 43733T and publicly available genomes of B. glumae BGR1 and B. gladioli BSR3 enabled comprehensive comparative genome analyses among three rice-pathogenic Burkholderia species responsible for tissue rotting and seedling blight. Our results suggest that B. glumae has evolved rapidly, or has undergone rapid genome rearrangements or deletions, in response to the hosts. It also, clarifies the unique features of rice pathogenic Burkholderia species relative to other animal and human Burkholderia species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1558-5) contains supplementary material, which is available to authorized users.  相似文献   

18.
Bacterial attack is a serious agricultural problem for growth of rice seedlings in the nursery and field. The thionins purified from seed and etiolated seedlings of barley are known to have antimicrobial activity against necrotrophic pathogens; however, we found that no endogenous rice thionin genes alone are enough for resistance to two major seed-transmitted phytopathogenic bacteria, Burkholderia plantarii and B. glumae, although rice thionin genes constitutively expressed in coleoptile, the target organ of the bacteria. Thus, we isolated thionin genes from oat, one of which was overexpressed in rice. When wild-type rice seed were germinated with these bacteria, all seedlings were wilted with severe blight. In the seedling infected with B. plantarii, bacterial staining was intensively marked around stomata and intercellular spaces. However, transgenic rice seedlings accumulating a high level of oat thionin in cell walls grew almost normally with bacterial staining only on the surface of stomata. These results indicate that the oat thionin effectively works in rice plants against bacterial attack.  相似文献   

19.
20.
Antibacterial and antifungal activity was investigated for strains of Acidovorax spp., Burkholderia spp., Herbaspirillum rubrisubalbicans and Ralstonia solanacearum ; strains representing 118 species and pathovars of Xanthomonas were also tested for phytotoxic capacity. Antibacterial activity was present in all Burkholderia spp. except B. andropogonis , in biovars II and III of R. solanacearum but not in biovars I and IV, and in two strains of Xanthomonas. Little antibacterial activity was recorded for Acidovorax spp. Antifungal activity was expressed by most strains of A. avenae ssp. avenae and A. avenae ssp. cattleyae. Weak or variable antifungal reactions were given by strains of A. avenae ssp. citrulli and no activity was expressed by A. konjaci. Most strains of B. caryophylli, B. cepacia, B. gladioli pv. agaricicola, B. gladioli pv. alliicola, B. gladioli pv. gladioli , B. glumae and B. plantari produced extensive inhibition zones against Rhodotorula mucilaginosa. Strains of H. rubrisubalbicans and R. solanacearum gave negative, weak or variable reactions. Strains of Xanthomonas spp. exhibited no antifungal activity. In all cases antifungal activity was caused by a low molecular weight toxin. Three Xanthomonas strains exhibited phytotoxic activity. The ecological implications of these data are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号