首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The twin arginine protein transport (Tat) system translocates folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of chloroplasts. In Escherichia coli, TatA, TatB, and TatC are essential components of the machinery. A complex of TatB and TatC acts as the substrate receptor, whereas TatA is proposed to form the Tat transport channel. TatA and TatB are related proteins that comprise an N-terminal transmembrane helix and an adjacent amphipathic helix. Previous studies addressing the topological organization of TatA have given conflicting results. In this study, we have addressed the topological arrangement of TatA and TatB in intact cells by labeling of engineered cysteine residues with the membrane-impermeable thiol reagent methoxypolyethylene glycol maleimide. Our results show that TatA and TatB share an N-out, C-in topology, with no evidence that the amphipathic helices of either protein are exposed at the periplasmic side of the membrane. We further show that the N-out, C-in topology of TatA is fixed and is not affected by the absence of other Tat components or by the overproduction of a Tat substrate. These data indicate that topological reorganization of TatA is unlikely to accompany Tat-dependent protein transport.  相似文献   

2.
Orriss GL  Tarry MJ  Ize B  Sargent F  Lea SM  Palmer T  Berks BC 《FEBS letters》2007,581(21):4091-4097
The Tat (twin arginine translocation) system transports folded proteins across bacterial and thylakoid membranes. The integral membrane proteins TatA, TatB, and TatC are the essential components of the Tat pathway in Escherichia coli. We demonstrate that formation of a stable complex between TatB and TatC does not require TatA or other Tat components. We show that the TatB and TatC proteins are each able to a form stable, defined, homomultimeric complexes. These we suggest correspond to structural subcomplexes within the parental TatBC complex. We infer that TatC forms a core to the TatBC complex on to which TatB assembles.  相似文献   

3.
Bacterial twin arginine translocation (Tat) pathways have evolved to facilitate transport of folded proteins across membranes. Gram-negative bacteria contain a TatABC translocase composed of three subunits named TatA, TatB, and TatC. In contrast, the Tat translocases of most Gram-positive bacteria consist of only TatA and TatC subunits. In these minimal TatAC translocases, a bifunctional TatA subunit fulfils the roles of both TatA and TatB. Here we have probed the importance of conserved residues in the bifunctional TatAy subunit of Bacillus subtilis by site-specific mutagenesis. A set of engineered TatAy proteins with mutations in the cytoplasmic hinge and amphipathic helix regions were found to be inactive in protein translocation under standard growth conditions for B. subtilis or when heterologously expressed in Escherichia coli. Nevertheless, these mutated TatAy proteins did assemble into TatAy and TatAyCy complexes, and they facilitated membrane association of twin arginine precursor proteins in E. coli. Interestingly, most of the mutated TatAyCy translocases were salt-sensitive in B. subtilis. Similarly, the TatAC translocases of Bacillus cereus and Staphylococcus aureus were salt-sensitive when expressed in B. subtilis. Taken together, our present observations imply that salt-sensitive electrostatic interactions have critical roles in the preprotein translocation activity of certain TatAC type translocases from Gram-positive bacteria.  相似文献   

4.
The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D(+2))-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D(+2)) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D(+2))-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.  相似文献   

5.
The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the amino-terminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.  相似文献   

6.
The twin arginine translocation (Tat) machinery which is capable of transporting folded proteins across lipid bilayers operates in the thylakoid membrane of plant chloroplasts as well as in the cytoplasmic membrane of bacteria. It is composed of three integral membrane proteins (TatA, TatB, and TatC) which form heteromeric complexes of high molecular weight that accomplish binding and transport of substrates carrying Tat pathway-specific signal peptides. Western analyses using affinity purified antibodies showed in both, juvenile and adult tissue from Arabidopsis thaliana, an approximately equimolar ratio of the TatB and TatC components, whereas TatA was detectable only in minor amounts. Upon Blue Native-PAGE, TatB and TatC were found in four heteromeric TatB/C complexes possessing molecular weights of approximately 310, 370, 560 and 620 kDa, respectively, while TatA was detected only in a molecular weight range below 200 kDa. The implications of these findings on the currently existing models explaining the mechanism of Tat transport are discussed.  相似文献   

7.
Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA.  相似文献   

8.
The Tat system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. Substrates are targeted to the Tat pathway by signal peptides containing a pair of consecutive arginine residues. The membrane proteins TatA, TatB and TatC are the essential components of this pathway in Escherichia coli. The complexes that these proteins form at native levels of expression have been investigated by the use of affinity tag-coding sequences fused to chromosomal tat genes. Distinct TatA and TatBC complexes were identified using size-exclusion chromatography and shown to have apparent molecular masses of approximately 700 and 500 kDa, respectively. Following in vivo expression, the Tat substrate protein SufI was found to copurify with the TatBC, but not the TatA, complex. This binding required the SufI signal peptide. Substitution of the twin-arginine residues in the SufI signal peptide by either twin lysine or twin alanine residues abolished export. However, both variant SufI proteins still copurified with the TatBC complex. These data show that the twin-arginine residues of the Tat consensus motif are not essential for binding of precursor to the TatBC complex but are required for the successful entry of the precursor into the transport cycle. The effect on substrate binding of single amino acid substitutions in TatC that affect Tat transport were studied using TatC variants Phe94Ala, Glu103Ala, Glu103Arg and Asp211Ala. Only variant Glu103Arg showed reduced copurification of SufI with TatBC. The transport defects associated with the other TatC variants do not, therefore, arise from an inability to bind substrate proteins.  相似文献   

9.
The Escherichia coli Tat apparatus is a protein translocation system that serves to export folded proteins across the inner membrane. The integral membrane proteins TatA, TatB and TatC are essential components of this pathway. Substrate proteins are directed to the Tat apparatus by specialized N-terminal signal peptides bearing a consensus twin-arginine sequence motif. Here we have systematically examined the Tat complexes that can be purified from overproducing strains. Our data suggest that the TatA, TatB and TatC proteins are found in at least two major types of high molecular mass complex in detergent solution, one consisting predominantly of TatA but with a small quantity of TatB, and the other based on a TatBC unit but also containing some TatA protein. The latter complex is shown to be capable of binding a Tat signal peptide. Using an alternative purification strategy we show that it is possible to isolate a TatABC complex containing a high molar excess of the TatA component.  相似文献   

10.
The Escherichia coli twin arginine translocation (Tat) system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. The genes tatA, tatB, tatC and tatE code for integral membrane proteins that are components of the Tat pathway. Cells co-overexpressing tatABCDE show an increased rate of export of a signal peptide-defective Tat precursor protein and a complex containing the TatA and TatB proteins can be purified from the membranes of such cells. The purified TatAB complex has an apparent molecular mass of 600 kDa as measured by gel permeation chromatography and, like the membranes of wild-type cells, contains a large molar excess of TatA over TatB. Negative stain electron microscopy of the complex reveals cylindrical structures that may correspond to the Tat protein transport channel.  相似文献   

11.
Both in prokaryotic organisms and in chloroplasts, a specialized protein transport pathway exists which is capable of translocating proteins in a fully folded conformation. Transport is mediated in both instances by signal peptides harbouring a twin-arginine consensus motif (twin-arginine translocation (Tat) pathway). The Tat translocase comprises the three functionally different membrane proteins TatA, TatB, and TatC. While TatB and TatC are involved in the specific recognition of the substrate, TatA might be the major pore-forming component. Current evidence suggests that a functional Tat translocase is assembled from separate TatBC and TatA assemblies only on demand, i.e., in the presence of transport substrate and a transmembrane H+-motive force.  相似文献   

12.
Translocation of twin-arginine precursor proteins across the cytoplasmic membrane of Escherichia coli requires the three membrane proteins TatA, TatB, and TatC. TatC and TatB were shown to be involved in precursor binding. We have analyzed in vitro a number of single alanine substitutions in tatC that were previously shown to compromise in vivo the function of the Tat translocase. All tatC mutants that were defective in precursor translocation into cytoplasmic membrane vesicles concomitantly interfered with precursor binding not only to TatC but also to TatB. Hence structural changes of TatC that affect precursor targeting simultaneously abolish engagement of the twin-arginine signal sequence with TatB and block the formation of a functional Tat translocase. Since these phenotypes were observed for tatC mutations spread over the first half of TatC, this entire part of the molecule must globally be involved in precursor binding.  相似文献   

13.
Both in prokaryotic organisms and in chloroplasts, a specialized protein transport pathway exists which is capable of translocating proteins in a fully folded conformation. Transport is mediated in both instances by signal peptides harbouring a twin-arginine consensus motif (twin-arginine translocation (Tat) pathway). The Tat translocase comprises the three functionally different membrane proteins TatA, TatB, and TatC. While TatB and TatC are involved in the specific recognition of the substrate, TatA might be the major pore-forming component. Current evidence suggests that a functional Tat translocase is assembled from separate TatBC and TatA assemblies only on demand, i.e., in the presence of transport substrate and a transmembrane H+-motive force.  相似文献   

14.
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF.  相似文献   

15.
Twin-arginine-containing signal sequences mediate the transmembrane transport of folded proteins. The cognate twin-arginine translocation (Tat) machinery of Escherichia coli consists of the membrane proteins TatA, TatB, and TatC. Whereas Tat signal peptides are recognized by TatB and TatC, little is known about molecular contacts of the mature, folded part of Tat precursor proteins. We have placed a photo-cross-linker into Tat substrates at sites predicted to be either surface-exposed or hidden in the core of the folded proteins. On targeting of these variants to the Tat machinery of membrane vesicles, all surface-exposed sites were found in close proximity to TatB. Correspondingly, incorporation of the cross-linker into TatB revealed multiple precursor-binding sites in the predicted transmembrane and amphipathic helices of TatB. Large adducts indicative of TatB oligomers contacting one precursor molecule were also obtained. Cross-linking of Tat substrates to TatB required an intact twin-arginine signal peptide and disappeared upon transmembrane translocation. Our collective data are consistent with TatB forming an oligomeric binding site that transiently accommodates folded Tat precursors.  相似文献   

16.
The twin-arginine translocation (Tat) machinery of the Escherichia coli inner membrane is dedicated to the export of proteins harboring a conserved SRRxFLK motif in their signal sequence. TatA, TatB, and TatC are the functionally essential constituents of the Tat machinery, but their precise function is unknown. Using site-specific crosslinking, we have analyzed interactions of the twin-arginine precursor preSufI with the Tat proteins upon targeting to inner membrane vesicles. TatA association is observed only in the presence of a transmembrane H(+) gradient. TatB is found in contact with the entire signal sequence and adjacent parts of mature SufI. Interaction of TatC with preSufI is, however, restricted to a discrete area around the consensus motif. The results reveal a hierarchy in targeting of a Tat substrate such that for the primary interaction, TatC is both necessary and sufficient while a subsequent association with TatB likely mediates transfer from TatC to the actual Tat pore.  相似文献   

17.
Twin arginine translocation (Tat) systems catalyze the transport of folded proteins across the bacterial cytosolic membrane or the chloroplast thylakoid membrane. In the Tat systems of Escherichia coli and many other species TatA-, TatB-, and TatC-like proteins have been identified as essential translocase components. In contrast, the Bacillus subtilis phosphodiesterase PhoD-specific system consists only of a pair of TatA(d)/TatC(d) proteins and involves a TatA(d) protein engaged in a cytosolic and a membrane-embedded localization. Because soluble TatA(d) was able to bind the twin arginine signal peptide of prePhoD prior to membrane integration it could serve to recruit its substrate to the membrane via the interaction with TatC(d). By analyzing the distribution of TatA(d) and studying the mutual affinity with TatC(d) we have shown here that TatC(d) assists the membrane localization of TatA(d). Besides detergent-solubilized TatC(d), membrane-integrated TatC(d) showed affinity for soluble TatA(d). By using a peptide library-specific binding of TatA(d) to cytosolic loops of membrane protein TatC(d) was demonstrated. Depletion of TatC(d) in B. subtilis resulted in a drastic reduction of TatA(d), indicating a stabilizing effect of TatC(d) for TatA(d). In addition, the presence of the substrate prePhoD was the prerequisite for appropriate localization in the cytosolic membrane of B. subtilis as demonstrated by freeze-fracture experiments.  相似文献   

18.
The Escherichia coli Tat system mediates Sec-independent export of protein precursors bearing twin-arginine signal peptides. The essential Tat pathway components TatA, TatB and TatC are shown to be integral membrane proteins. Upon removal of the predicted N-terminal transmembrane helix TatA becomes a water-soluble protein. In contrast the homologous TatB protein retains weak peripheral interactions with the cytoplasmic membrane when the analogous helix is deleted. Chemical crosslinking studies indicate that TatA forms at least homotrimers, and TatB minimally homodimers, in the native membrane environment. The presence of such homo-oligomeric interactions is supported by size exclusion chromatography.  相似文献   

19.
The twin arginine protein transport (Tat) system transports folded proteins across cytoplasmic membranes of bacteria and thylakoid membranes of plants, and in Escherichia coli it comprises TatA, TatB and TatC components. In this study we show that the membrane extrinsic domain of TatB forms parallel contacts with at least one other TatB protein. Truncation of the C-terminal two thirds of TatB still allows complex formation with TatC, although protein transport is severely compromised. We were unable to isolate transport-inactive single codon substitution mutations in tatB suggesting that the precise amino acid sequence of TatB is not critical to its function.

Structured summary

TatAphysically interacts with TatA by two hybrid(View interaction)TatB and TatCbind by molecular sieving(View interaction)TatBphysically interacts with TatB by two hybrid (View Interaction 1, 2)  相似文献   

20.
In Escherichia coli, transmembrane translocation of proteins can proceed by a number of routes. A subset of periplasmic proteins are exported via the Tat pathway to which proteins are directed by N-terminal "transfer peptides" bearing the consensus (S/T)RRXFLK "twin-arginine" motif. The Tat system involves the integral membrane proteins TatA, TatB, TatC, and TatE. Of these, TatA, TatB, and TatE are homologues of the Hcf106 component of the DeltapH-dependent protein import system of plant thylakoids. Deletion of the tatB gene alone is sufficient to block the export of seven endogenous Tat substrates, including hydrogenase-2. Complementation analysis indicates that while TatA and TatE are functionally interchangeable, the TatB protein is functionally distinct. This conclusion is supported by the observation that Helicobacter pylori tatA will complement an E. coli tatA mutant, but not a tatB mutant. Analysis of Tat component stability in various tat deletion backgrounds shows that TatC is rapidly degraded in the absence of TatB suggesting that TatC complexes, and is stabilized by, TatB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号