首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization by spore conjugation was used to develop new and improved wine yeasts of Saccharomyces cerevisiae. The procedure was achieved with diploid, homothallic strains with high sporulation frequency and high spore viability. The method was verified by crossing flocculent and non-H2S-forming strains. Single-spore descendants of the hybrids were studied by tetrad analysis with regard to the aforementioned characters and the other two winemaking traits, i.e., ethanol production and fermentation rate. A highly flocculent, non-H2S-forming wine yeast strain with a high fermentation rate and high ethanol production was obtained.  相似文献   

2.
From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts.  相似文献   

3.
The genus Saccharomyces consists of several species divided into the sensu stricto and the sensu lato groups. The genomes of these species differ in the number and organization of nuclear chromosomes and in the size and organization of mitochondrial DNA (mtDNA). In the present experiments we examined whether these yeasts can exchange DNA and thereby create novel combinations of genetic material. Several putative haploid, heterothallic yeast strains were isolated from different Saccharomyces species. All of these strains secreted an a- or alpha-like pheromone recognized by S. cerevisiae tester strains. When interspecific crosses were performed by mass mating between these strains, hybrid zygotes were often detected. In general, the less related the two parental species were, the fewer hybrids they gave. For some crosses, viable hybrids could be obtained by selection on minimal medium and their nuclear chromosomes and mtDNA were examined. Often the frequency of viable hybrids was very low. Sometimes putative hybrids could not be propagated at all. In the case of sensu stricto yeasts, stable viable hybrids were obtained. These contained both parental sets of chromosomes but mtDNA from only one parent. In the case of sensu lato hybrids, during genetic stabilization one set of the parental chromosomes was partially or completely lost and the stable mtDNA originated from the same parent as the majority of the nuclear chromosomes. Apparently, the interspecific hybrid genome was genetically more or less stable when the genetic material originated from phylogenetically relatively closely related parents; both sets of nuclear genetic material could be transmitted and preserved in the progeny. In the case of more distantly related parents, only one parental set, and perhaps some fragments of the other one, could be found in genetically stabilized hybrid lines. The results obtained indicate that Saccharomyces yeasts have a potential to exchange genetic material. If Saccharomyces isolates could mate freely in nature, horizontal transfer of genetic material could have occurred during the evolution of modern yeast species.  相似文献   

4.
Industrial food-grade yeast strains are selected for traits that enhance their application in quality production processes. Wine yeasts are required to survive in the harsh environment of fermenting grape must, while at the same time contributing to wine quality by producing desirable aromas and flavors. For this reason, there are hundreds of wine yeasts available, exhibiting characteristics that make them suitable for different fermentation conditions and winemaking practices. As wine styles evolve and technical winemaking requirements change, however, it becomes necessary to improve existing strains. This becomes a laborious and costly process when the targets for improvement involve flavor compound production. Here, we demonstrate a new approach harnessing preexisting industrial yeast strains that carry desirable flavor phenotypes - low hydrogen sulfide (H(2) S) production and high ester production. A low-H(2) S Saccharomyces cerevisiae strain previously generated by chemical mutagenesis was hybridized independently with two ester-producing natural interspecies hybrids of S.?cerevisiae and Saccharomyces kudriavzevii. Deficiencies in sporulation frequency and spore viability were overcome through use of complementary selectable traits, allowing successful isolation of several novel hybrids exhibiting both desired traits in a single round of selection.  相似文献   

5.
The present study is an attempt to utilize hybrids among several inbred strains of rats as useful animals for the studies of effectiveness and toxicology on drugs., Four-way crosses were made among the LEW, WM, F344 and DRY strains of rats, and their characteristics were examined. From the breeding data of diallel crosses among these four strains and reciprocal crosses among their F1 hybrids, the mating type indicating the highest reproductivity was (LEW X WM) F1 X (F344 X DRY) F1. These four-way crosses were designated as LWFD. The reproductivity of this mating type was exceedingly higher than those of four strains. In order to examine the susceptibility to thiamine hydrochloride, the acute toxicity test was practiced in inbred strains, F1 hybrids and four-way crosses. As a result, in spite of highly heterogeneous population, the LWFD did not show a peculiar response in comparison with four strains and their F1 hybrids. Furthermore, hematological and clinico-biochemical values of the LWFD did not show a large variability as presumed. From these results, it is suggested that hybrids such as four-way crosses among inbred strains can be used as useful animals for the studies of effectiveness and toxicology on drugs.  相似文献   

6.
Three strains out of thirty-one wine yeasts (Saccharomyces cerevisiae) were selected for their good winemaking properties (fermentation rate, tolerance of sulfur dioxide, aroma productivity, wine quality) and genetic markers (KHR killer activity, galactose assimilation), and used for hybridization by spore to spore mating. Of the twelve hybrids produced, two, Hy17-108 (RIFY 1001 × RIFY 1067) and Hy41-308 (RIFY 1001 × RIFY 1065), were selected on the basis of a fermentation test. In experimental winemaking the two hybrids demonstrated improved aroma productivity for higher alcohols, aromatic esters and/or fatty acids, while their fermentation rate was nearly the same as that of the parental strains.  相似文献   

7.
A general method to convert homothallic strains of the yeast Saccharomyces cerevisiae to heterothallism is described which is applicable to genetically well-behaved diploids, as well as to strains that sporulate poorly or produce few viable and mating-competent spores. The heterothallic (ho) allele was introduced into three widely used wine strains through spore × cell hybridization. The resultant hybrids were sporulated, and heterothallic segregants were isolated for use in successive backcrosses. Heterothallic progeny of opposite mating type and monosomic for chromosome III produced by sixth-backcross hybrids or their progeny were mated together to reconstruct heterothallic derivatives of the wine strain parents. A helpful prerequisite to the introduction of ho was genetic purification of the parental strains based on repeated cycles of sporulation, ascus dissection, and clonal selection. A positive selection to isolate laboratory-wine strain hybrids requiring no prior genetic alteration of the industrial strains, coupled with a partial selection to reduce the number of spore progeny needed to be screened to isolate heterothallic segregants of the proper genotype made the procedure valuable for genetically intractable strains. Trial grape juice fermentations indicated that introduction of ho had no deleterious effect on fermentation behavior.  相似文献   

8.
The mismatch repair system is the major barrier to genetic recombination during interspecific sexual conjugation in prokaryotes. The existence of this anti-recombination activity has implications for theories of evolution and the isolation of species. To determine if this phenomenon occurs in eukaryotes, the effect of a deficiency of mismatch repair on the meiotic sterility of an interspecific hybrid of Saccharomyces cerevisiae and the closely related species Saccharomyces paradoxus was examined. The results demonstrate that the rare viable spores from these hybrids have high frequencies of aneuploidy and low frequencies of genetic exchange. Hybrids lacking mismatch repair genes PMS1 or MSH2 display increased meiotic recombination, decreased chromosome non-disjunction and improved spore viability. These observations are consistent with the proposal that the mismatch repair system is an element of the genetic barrier between eukaryotic species. We suggest that an anti-recombination activity during meiosis contributes towards the establishment of post-zygotic species barriers.  相似文献   

9.
Fluorescent amplified fragment length polymorphism analysis demonstrates a high level of gene exchange between Saccharomyces sensu stricto species, with some strains having undergone multiple interspecific hybridization events with subsequent changes in genome complexity. Two lager strains were shown to be hybrids between Saccharomyces cerevisiae and the alloploid species Saccharomyces pastorianus. The genome structure of CBS 380(T), the type strain of Saccharomyces bayanus, is also consistent with S. pastorianus gene transfer. The results indicate that the cider yeast, CID1, possesses nuclear DNA from three separate species. Mating experiments show that there are no barriers to interspecific conjugation of haploid cells. Furthermore, the allopolyploid strains were able to undergo further hybridizations with other Saccharomyces sensu stricto yeasts. These results demonstrate that introgression between the Saccharomyces sensu stricto species is likely.  相似文献   

10.
Przyboś E 《Folia biologica》2002,50(1-2):57-60
Inter- and intra-strain crosses were made in Paramecium biaurelia of the P. aurelia species complex for studying the relation of strains within the species. Altogether ten strains originating from Scotland, Spain, Romania, Czech Republic, Ukraine, Italy, Germany, Russia, and Poland (two strains) were studied. A high percentage of surviving clones in both generations, F1 (obtained by conjugation) and F2 (obtained by autogamy), was observed in strain crosses, indicating a strong relation between the strains, and absence of genetic barriers between them in P. biaurelia.  相似文献   

11.
During sporulation of diploids from crosses between different strains of the yeast Saccharomycopsis (Candida) lipolytica irregular numbers of ascospores per ascus have been observed. Using the serial section method it could be shown now by means of electron microscopy that in one-, two-, and three-spored asci unenclosed "naked" nuclei occur additionally to nuclei incorporated in mature spores. It was demonstrated that the production of less than four spores per ascus in this yeast is not the result of a lack of meiotic products but of the nonutilization of nuclei from meiosis. In 2--4 spored asci usually four products of meiosis in form of enclosed and free nuclei could be demonstrated which indicate a normal meiotic division. All ascospores derived from asci with different spore numbers are uninuclear. It is assumed that a defect in spore formation caused by structural changes of chromosomes or aneuploidy should give rise to the occurrence of non incorporated nuclei and spore irregularity. It was concluded that meiosis and spore formation in Saccharomycopsis lipolytica seem to represent parallel and coordinated processes which generally resemble those recorded for Saccharomyces cerevisiae and Hansenula species.  相似文献   

12.
Paternal inheritance of egg traits in mice: a case of genomic imprinting   总被引:1,自引:0,他引:1  
Eggs from reciprocal hybrids between the C57BL/6By and BALB/cBy strains were tested for their susceptibility to attack by hyaluronidase and pronase. There were significant reciprocal differences between the F1 females in the responses of their unfertilized eggs to both enzymes. The F1 hybrids from BALB mothers showed the increased susceptibility characteristic of C57BL whilst the F1 hybrids with C57BL mothers were more resistant to both enzymes, like BALB mice. Eggs from the four kinds of reciprocal F2 hybrid females also showed patroclinous patterns of susceptibility. A patroclinous difference was found between reciprocal crosses of the CXBD and CXBE recombinant inbred strains but not in crosses between recombinant inbred strains with similar phenotypes. Cross fostering did not alter the phenotypes of the C57BL and BALB females or those of their reciprocal F1 hybrids. The findings are interpreted in terms of differential genomic imprinting of paternally inherited information. The possible general usefulness of patroclinous differences between reciprocal F1 females in revealing differences in imprinting is noted.  相似文献   

13.
Arjen Biere  Sonja Honders 《Oecologia》1996,107(3):307-320
It is often assumed that host specialization is promoted by trade-offs in the performance of parasites on different host species, but experimental evidence for such trade-offs is scant. We studied differences in performance among strains of the anther smut fungus Ustilago violacea from two closely related host plant species, Silene alba and S. dioica, on progeny of (1) the host species from which they originated, (2) the alternative host species, and (3) inter-specific hybrids. Significant intra-specific variation in the pathogen was found for both infection success on a range of host genotypes (virulence) and components of spore production per infected host (aggressiveness) (sensu Burdon 1987). Strains did not have overall higher virulence on conspecifics of their host of origin than on strains from the heterospecific host, but they did have a significantly (c. 3 times) higher spore production per infected male host. This finding suggests that host adaptation may have evolved with respect to aggressiveness rather than virulence. The higher aggressiveness of strains on conspecifics of their host of origin resulted both from higher spore production per infected flower (spores are produced in the anthers), and greater ability to stimulate flower production on infected hosts. The latter indicates the presence of adaptive intraspecific variation in the ability of host manipulation. As transmission of the fungus is mediated by insects that are both pollinators of the host and vectors of the disease, we also assessed the effect of strains on host floral traits. Infection resulted in a reduction of inflorescence height, flower size, and nectar production per flower. Strains did not differ in their effect on nectar production, but infection with strains from S. alba resulted in a stronger reduction of inflorescence height and petal size on both host species. Vectors may therefore in principle discriminate among hosts infected by different strains and affect their efficiency of transmission. Contrary to assumptions of recent hypotheses about the role of host hybrids in the evolution of parasites, hybrids were not generally more susceptible than parental hosts. It is therefore unlikely that the rate of evolution of the pathogen on the parental species is slowed down by selection for specialization on the hybrids.  相似文献   

14.
The homothallic fungus Sordaria macrospora produces perithecia with meiotically derived ascospores. In most cases, intraspecies crosses between strains from different culture collections generate fertile hybrid perithecia in the contact zone of two mycelia. However, in some of these crosses we observed a significant decrease in the fertility of the hybrid perithecia when strains of different origin were used for mating. Since we assumed that chromosome variability between the culture collection strains might contribute to this reduction in fertility, we performed pulsed‐field gel electrophoresis. In the course of our study, we were able to identify two major groups of electrophoretic karyotypes in S. macrospora culture collection strains. A quantitative analysis revealed that polymorphic karyotypes contribute to a reduction of fertility in forced crosses between strains carrying differently sized chromosomes. The observed intraspecific chromosome length polymorphism might have consequences on the speciation process of a homothallic fungus capable of sexual but not of asexual spore formation.  相似文献   

15.
Kem Mutations Affect Nuclear Fusion in Saccharomyces Cerevisiae   总被引:19,自引:0,他引:19       下载免费PDF全文
J. Kim  P. O. Ljungdahl    G. R. Fink 《Genetics》1990,126(4):799-812
  相似文献   

16.
Yan Z  Xu J 《Genetics》2003,163(4):1315-1325
Previous studies demonstrated that mitochondrial DNA (mtDNA) was uniparentally transmitted in laboratory crosses of the pathogenic yeast Cryptococcus neoformans. To begin understanding the mechanisms, this study examined the potential role of the mating-type locus on mtDNA inheritance in C. neoformans. Using existing isogenic strains (JEC20 and JEC21) that differed only at the mating-type locus and a clinical strain (CDC46) that possessed a mitochondrial genotype different from JEC20 and JEC21, we constructed strains that differed only in mating type and mitochondrial genotype. These strains were then crossed to produce hyphae and sexual spores. Among the 206 single spores analyzed from six crosses, all but one inherited mtDNA from the MATa parents. Analyses of mating-type alleles and mtDNA genotypes of natural hybrids from clinical and natural samples were consistent with the hypothesis that mtDNA is inherited from the MATa parent in C. neoformans. To distinguish two potential mechanisms, we obtained a pair of isogenic strains with different mating-type alleles, mtDNA types, and auxotrophic markers. Diploid cells from mating between these two strains were selected and 29 independent colonies were genotyped. These cells did not go through the hyphal stage or the meiotic process. All 29 colonies contained mtDNA from the MATa parent. Because no filamentation, meiosis, or spore formation was involved in generating these diploid cells, our results suggest a selective elimination of mtDNA from the MATalpha parent soon after mating. To our knowledge, this is the first demonstration that mating type controls mtDNA inheritance in fungi.  相似文献   

17.
Using restriction analysis of noncoding rDNA regions, multiplex PCR, and molecular karyotyping, we have examined Saccharomyces strains isolated from red berry wine materials in Russia, Belarus, and Ukraine. According to the molecular analysis, all strains belong to the species S. cerevisiae. A correlation was revealed between microsatellite fingerprints of the strains and the source of their isolation. The strains isolated from juices and from the surface of different berries showed distinct PCR profiles. The genome compositions of interspecific Saccharomyces hybrids of natural and laboratory origin were studied.  相似文献   

18.
The development of a protoplast manipulation protocol for the industrially important bacterium Streptomyces clavuligerus, which produces the beta-lactamase inhibitor clavulanic acid, made possible a preliminary genetic mapping study based on protoplast fusion crosses. A preliminary position for 11 markers on the S. clavuligerus genetic map is proposed. Fusion progeny were characterized by random spore analysis because the markers present in the strains were not amenable to the conventional four-on-four selection procedure. Whilst the resulting map is similar to that derived by conjugation for S. clavuligerus and S. coelicolor, further analysis of the markers is required to confirm these observations.  相似文献   

19.
Summary The genetic segregation of ribosomal DNA (rDNA) in Neurospora crassa was analyzed by exploiting restriction fragment length polymorphisms in the nontranscribed spacer (NTS) sequences of nine laboratory wild-type strains and wild-collected strains. In an analysis of random spore progeny from seven crosses, and of ordered tetrads from two of those crosses the rDNA was shown to be inherited in a simple, stable Mendelian fashion, exhibiting an approximately 1:1 ratio of the two parental rDNA types. No meiotic recombinants were detected among the progeny, indicating that non-sister-chromatid crossing over is highly suppressed in the rDNA region. The basis for this suppression of meiotic recombination is not known.  相似文献   

20.
AHZ. McKee  N. Kleckner 《Genetics》1997,146(3):797-816
We describe a general new approach for identifying recessive mutations that affect diploid strains of yeast Saccharomyces cerevisiae and the application of this method to the identification of mutations that confer an intermediate block in meiotic prophase chromosome metabolism. The method uses a temperature-sensitive conjugation mutation ste7-1 in combination with homothallism. The mutations of interest confer a defect in spore formation that is dependent upon a gene required for initiation of meiotic recombination and development of meiosis-specific chromosome structure (SPO11). Identified in this screen were null mutations of the DMC1 gene, nonnull mutations of RAD50 (rad50S), and mutations in three new genes designated SAE1, SAE2 and SAE3 (Sporulation in the Absence of Spo Eleven). Molecular characterization of the SAE2 gene and characterization of meiotic and mitotic phenotypes of sae2 mutants are also presented. The phenotypes conferred by a sae2 null mutation are virtually indistinguishable from those conferred by the previously identified nonnull mutations of RAD50 (rad50S). Most notably, both mutations confer only weak sensitivity to the radiomimetic agent methyl methane sulfonate (MMS) but completely block resection and turnover of meiosis-specific double-strand breaks. These observations provide further evidence that this constellation of phenotypes identifies a specific molecular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号