首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine and growth factor signal transduction. Although the affect of SOCS proteins on the Jak-STAT pathway has been well characterized, their role in the regulation of other signaling modules is not well understood. In the present study, we demonstrate that SOCS3 physically interacts with the SH2/SH3-containing adapter proteins Nck and Crk-L, which are known to couple activated receptors to multiple downstream signaling pathways and the actin cytoskeleton. Our data show that the SOCS3/Nck and SOCS3/Crk-L interactions depend on tyrosine phosphorylation of SOCS3 Tyr(221) within the conserved SOCS box motif and intact SH2 domains of Nck and Crk-L. Furthermore, SOCS3 Tyr(221) forms a YXXP motif, which is a consensus binding site for the Nck and Crk-L SH2 domains. Expression of SOCS3 in NIH3T3 cells induces constitutive recruitment of a Nck-GFP fusion protein to the plasma membrane and constitutive tyrosine phosphorylation of endogenous Nck. Our findings suggest that SOCS3 regulates multiple cytokine and growth factor-activated signaling pathways by acting as a recruitment factor for adapter proteins.  相似文献   

3.
Members of the suppressor of cytokine signalling (SOCS) family of proteins have been shown to inhibit cytokine signalling via direct interactions with JAK kinases or activated cytokine receptors. In addition to their novel amino-terminal regions and SH2 domains that mediate these interactions, the SOCS proteins also contain carboxy-terminal regions of homology called the SOCS box. The SOCS box serves to couple SOCS proteins and their binding partners with the elongin B and C complex, possibly targeting them for degradation. Several other families of proteins also contain SOCS boxes but differ from the SOCS proteins in the type of domain or motif they contain upstream of the SOCS box. We report here the cloning, characterization, mapping and expression analysis of four members of the ankyrin repeat and SOCS box-containing (Asb) protein family.  相似文献   

4.
The suppressors of cytokine signalling (SOCS) box is a structural domain found at the C-terminus of over 70 human proteins. It is usually coupled to a protein interaction module such as an SH2 domain in case of SOCS proteins, a family of modulators of cytokine signaling. The SOCS box participates in the formation of E3 ligase complexes, marking activated cytokine receptor complexes for proteasomal degradation. A similar mechanism was recently uncovered for controlling SOCS activity itself, since SOCS2 was found to enhance the turnover of other SOCS proteins. The SOCS box can also add unique features to individual SOCS proteins: it can function as an adaptor domain as was demonstrated for SOCS3, or as a modulator of substrate binding in case of CIS. In this review we discuss these multiple roles of the SOCS box, which emerges as a versatile module controlling cytokine signaling via multiple mechanisms.  相似文献   

5.
The Src homology 2 (SH2) domain is the most prevalent protein binding module that recognizes phosphotyrosine. This approximately 100-amino-acid domain is highly conserved structurally despite being found in a wide variety proteins. Depending on the nature of neighboring protein module(s), such as catalytic domains and other protein binding domains, SH2-containing proteins play many different roles in cellular protein tyrosine kinase (PTK) signaling pathways. Accumulating evidence indicates SH2 domains are highly versatile and exhibit considerable flexibility in how they bind to their ligands. To illustrate this functional versatility, we present three specific examples: the SAP, Cbl and SOCS families of SH2-containing proteins, which play key roles in immune responses, termination of PTK signaling, and cytokine responses. In addition, we highlight current progress in the development of SH2 domain inhibitors designed to antagonize or modulate PTK signaling in human disease. Inhibitors of the Grb2 and Src SH2 domains have been extensively studied, with the aim of targeting the Ras pathway and osteoclastic bone resorption, respectively. Despite formidable difficulties in drug design due to the lability and poor cell permeability of negatively charged phosphorylated SH2 ligands, a variety of structure-based strategies have been used to reduce the size, charge and peptide character of such ligands, leading to the development of high-affinity lead compounds with potent cellular activities. These studies have also led to new insights into molecular recognition by the SH2 domain.  相似文献   

6.
The tyrosine kinase Lyn is involved in oncogenic signalling in several leukaemias and solid tumours, and we have previously identified a pathway centred on Cbp [Csk (C-terminal Src kinase)-binding protein] that mediates both enzymatic inactivation, as well as proteasomal degradation of Lyn via phosphorylation-dependent recruitment of Csk (responsible for phosphorylating the inhibitory C-terminal tyrosine of Lyn) and SOCS1 (suppressor of cytokine signalling 1; an E3 ubiquitin ligase). In the present study we show that fusing specific functional motifs of Cbp and domains of SOCS1 together generates a novel molecule capable of directing the proteasomal degradation of Lyn. We have characterized the binding of pY (phospho-tyrosine) motifs of Cbp to SFK (Src-family kinase) SH2 (Src homology 2) domains, identifying those with high affinity and specificity for the SH2 domain of Lyn and that are preferred substrates of active Lyn. We then fused them to the SB (SOCS box) of SOCS1 to facilitate interaction with the ubiquitination-promoting elongin B/C complex. As an eGFP (enhanced green fluorescent protein) fusion, these proteins can direct the polyubiquitination and proteasomal degradation of active Lyn. Expressing this fusion protein in DU145 cancer cells (but not LNCaP or MCF-7 cells), that require Lyn signalling for survival, promotes loss of Lyn, loss of caspase 3, appearance of an apoptotic morphology and failure to survive/expand. These findings show how functional domains of Cbp and SOCS1 can be fused together to generate molecules capable of inhibiting the growth of cancer cells that express high levels of active Lyn.  相似文献   

7.
The SOCS box: a tale of destruction and degradation   总被引:26,自引:0,他引:26  
Although initially identified in the suppressor of cytokine signaling (SOCS) family of proteins, the C-terminal SOCS box has now been identified in more than 40 proteins in nine different families. Growing evidence suggests that the SOCS box, similar to the F-box, acts as a bridge between specific substrate-binding domains and the more generic proteins that comprise a large family of E3 ubiquitin protein ligases. In this way, SOCS proteins regulate protein turnover by targeting proteins for polyubiquitination and, therefore, for proteasome-mediated degradation.  相似文献   

8.
Proteins of the SOCS (suppressors of cytokine signalling) family are characterized by a conserved modular structure with pre-SH2 (Src homology 2), SH2 and SOCS-box domains. Several members, including CIS (cytokine-inducible SH2 protein), SOCS1 and SOCS3, are induced rapidly upon cytokine receptor activation and function in a negative-feedback loop, attenuating signalling at the receptor level. We used a recently developed mammalian two-hybrid system [MAPPIT (mammalian protein-protein interaction trap)] to analyse SOCS protein-interaction patterns in intact cells, allowing direct comparison with biological function. We find that, besides the SH2 domain, the C-terminal part of the CIS SOCS-box is required for functional interaction with the cytokine receptor motifs examined, but not with the N-terminal death domain of the TLR (Toll-like receptor) adaptor MyD88. Mutagenesis revealed that one single tyrosine residue at position 253 is a critical binding determinant. In contrast, substrate binding by the highly related SOCS2 protein, and also by SOCS1 and SOCS3, does not require their SOCS-box.  相似文献   

9.
SOCS-6 is a member of the suppressor of cytokine signaling (SOCS) family of proteins (SOCS-1 to SOCS-7 and CIS) which each contain a central SH2 domain and a carboxyl-terminal SOCS box. SOCS-1, SOCS-2, SOCS-3, and CIS act to negatively regulate cytokine-induced signaling pathways; however, the actions of SOCS-4, SOCS-5, SOCS-6, and SOCS-7 remain less clear. Here we have used both biochemical and genetic approaches to examine the action of SOCS-6. We found that SOCS-6 and SOCS-7 are expressed ubiquitously in murine tissues. Like other SOCS family members, SOCS-6 binds to elongins B and C through its SOCS box, suggesting that it might act as an E3 ubiquitin ligase that targets proteins bound to its SH2 domain for ubiquitination and proteasomal degradation. We investigated the binding specificity of the SOCS-6 and SOCS-7 SH2 domains and found that they preferentially bound to phosphopeptides containing a valine in the phosphotyrosine (pY) +1 position and a hydrophobic residue in the pY +2 and pY +3 positions. In addition, these SH2 domains interacted with a protein complex consisting of insulin receptor substrate 4 (IRS-4), IRS-2, and the p85 regulatory subunit of phosphatidylinositol 3-kinase. To investigate the physiological role of SOCS-6, we generated mice lacking the SOCS-6 gene. SOCS-6(-/-) mice were born in a normal Mendelian ratio, were fertile, developed normally, and did not exhibit defects in hematopoiesis or glucose homeostasis. However, both male and female SOCS-6(-/-) mice weighed approximately 10% less than wild-type littermates.  相似文献   

10.
Suppressor of cytokine signaling-1 (SOCS1) is an inducible Src homology 2 (SH2)-containing protein that negatively regulates cytokine and growth factor signaling required during thymic development. Recent evidence indicates that SOCS1 interacts with elongins B and C, which are components of a ubiquitin ligase complex, VCB (VHL/elonginC/B), based on the VHL (von Hippel Lindau) tumor suppressor protein. SOCS1 has previously been shown to operate as an inhibitor of Janus kinases. Here we show that SOCS1 has the distinct function of targeting the hematopoietic specific guanine nucleotide exchange factor, VAV, for ubiquitin-mediated protein degradation. VAV and SOCS1 form a protein complex through interactions between the VAV NH(2)-terminal regulatory region and the SH2 domain of SOCS1 in a phosphotyrosine-independent manner. SOCS1 decreases the steady state levels of cotransfected VAV and onco-VAV and reduces the focus forming activity of onco-VAV. SOCS1 stimulates the polyubiquitination of VAV proteins in vivo, which was stabilized by proteasomal inhibitors. These results suggest that SOCS1 programs VAV degradation by acting as a substrate-specific recognition component of a VCB-like ubiquitin ligase complex.  相似文献   

11.
Suppressors of cytokine signaling (SOCS) are Src homology-2-containing proteins originally identified as negative regulators of cytokine signaling. Accumulating evidence indicates a role for SOCS proteins in the regulation of additional signaling pathways including receptor tyrosine kinases. Notably, SOCS36E, the Drosophila ortholog of mammalian SOCS5, was recently implicated as a negative regulator of the Drosophila ortholog of EGFR. In this study, we aimed at characterizing the role of SOCS5 in the negative regulation of EGFR. Here we show that the expression of SOCS5 and its closest homolog SOCS4 is elevated in cells following treatment with EGF, similar to several negative feedback regulators of EGFR whose expression is up-regulated upon receptor activation. The expression of SOCS5 led to a marked reduction in EGFR expression levels by promoting EGFR degradation. The reduction in EGFR levels and EGF-induced signaling in SOCS5-expressing cells requires both the Src homology-2 and SOCS box domains of SOCS5. Interestingly, EGFR is degraded by SOCS5 prior to EGF treatment in a ligand- and c-Cbl-independent manner. SOCS5 can associate with EGFR and can also bind the ElonginBC protein complex via its SOCS box, which may recruit an E3 ubiquitin ligase to promote EGFR degradation. Thus, we have characterized a novel function for SOCS5 in regulating EGFR and discuss its potential role in controlling EGFR homeostasis.  相似文献   

12.
SAP (SLAM-associated protein) is a small lymphocyte-specific signalling molecule that is defective or absent in patients with X-linked lymphoproliferative syndrome (XLP). Consistent with its single src homology 2 (SH2) domain architecture and unusually high affinity for SLAM (also called CD150), SAP has been suggested to function by blocking binding of SHP-2 or other SH2-containing signalling proteins to SLAM receptors. Additionally, SAP has recently been shown to be required for recruitment and activation of the Src-family kinase FynT after SLAM ligation. This signalling 'adaptor' function has been difficult to conceptualize, because unlike typical SH2-adaptor proteins, SAP contains only a single SH2 domain and lacks other recognized protein interaction domains or motifs. Here, we show that the SAP SH2 domain binds to the SH3 domain of FynT and directly couples FynT to SLAM. The crystal structure of a ternary SLAM-SAP-Fyn-SH3 complex reveals that SAP binds the FynT SH3 domain through a surface-surface interaction that does not involve canonical SH3 or SH2 binding interactions. The observed mode of binding to the Fyn-SH3 domain is expected to preclude the auto-inhibited conformation of Fyn, thereby promoting activation of the kinase after recruitment. These findings broaden our understanding of the functional repertoire of SH3 and SH2 domains.  相似文献   

13.
Transformation of chicken embryo cells by oncogenic forms of pp60src (e.g., pp60v-src or pp60527F) is linked with a concomitant increase in the steady-state levels of tyrosine-phosphorylated cellular proteins. Activated forms of the Src protein-tyrosine kinase stably associate with tyrosine-phosphorylated proteins, including a protein of 110 kDa, pp110. Previous reports have established that stable complex formation between pp110 and pp60src requires the structural integrity of the Src SH2 and SH3 domains, whereas tyrosine phosphorylation of pp110 requires only the structural integrity of the SH3 domain. In normal chicken embryo cells, pp110 colocalizes with actin stress filaments, and in Src-transformed cells, pp110 is found associated with podosomes (rosettes). Here, we report the identification and characterization of cDNAs encoding pp110. The predicted open reading frame encodes a polypeptide of 635 amino acids which exhibits little sequence similarity with other protein sequences present in the available sequence data bases. Thus, pp110 is a distinctive cytoskeleton-associated protein. On the basis of its association with actin stress filaments, we propose the term AFAP-110, for actin filament-associated protein of 110 kDa. In vitro analysis of AFAP-110 binding to bacterium-encoded glutathione S-transferase (GST) fusion proteins revealed that AFAP-110 present in normal cell extracts binds efficiently to Src SH3/SH2-containing fusion proteins, less efficiently to Src SH3-containing proteins, and poorly to SH2-containing fusion proteins. In contrast, AFAP-110 in Src-transformed cell extracts bound to GST-SH3/SH2 and GST-SH2 fusion proteins. Analysis of AFAP-110 cDNA sequences revealed the presence of sequence motifs predicted to bind to SH2 and SH3 domains, respectively. We suggest that AFAP-110 may represent a cellular protein capable of interacting with SH3-containing proteins and, upon tyrosine phosphorylation, binds tightly to SH2-containing proteins, such as pp60src or pp59fyn. The potential roles of AFAP-110 as an SH3/SH2 cytoskeletal binding protein are discussed.  相似文献   

14.
15.
16.
17.
Suppressors of cytokine signaling (SOCS) proteins function as negative regulators of cytokine signaling and are involved in fine tuning the immune response. The structure and role of the SH2 domains and C‐terminal SOCS box motifs of the SOCS proteins are well characterized, but the long N‐terminal domains of SOCS4–7 remain poorly understood. Here, we present bioinformatic analyses of the N‐terminal domains of the mammalian SOCS proteins, which indicate that these domains of SOCS4, 5, 6, and 7 are largely disordered. We have also identified a conserved region of about 70 residues in the N‐terminal domains of SOCS4 and 5 that is predicted to be more ordered than the surrounding sequence. The conservation of this region can be traced as far back as lower vertebrates. As conserved regions with increased structural propensity that are located within long disordered regions often contain molecular recognition motifs, we expressed the N‐terminal conserved region of mouse SOCS4 for further analysis. This region, mSOCS486–155, has been characterized by circular dichroism and nuclear magnetic resonance spectroscopy, both of which indicate that it is predominantly unstructured in aqueous solution, although it becomes helical in the presence of trifluoroethanol. The high degree of sequence conservation of this region across different species and between SOCS4 and SOCS5 nonetheless implies that it has an important functional role, and presumably this region adopts a more ordered conformation in complex with its partners. The recombinant protein will be a valuable tool in identifying these partners and defining the structures of these complexes. Proteins 2011. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
19.
The four mammalian SPRY (a sequence repeat in dual-specificity kinase splA and ryanodine receptors) domain-containing suppressor of cytokine signalling (SOCS) box proteins (SSB-1 to -4) are characterised by a C-terminal SOCS box and a central SPRY domain. The latter is a protein interaction module found in over 1600 proteins, with more than 70 encoded in the human genome. Here we report the crystal structure of the SPRY domain of murine SSB-2 and compare it with the SSB-2 solution structure and crystal structures of other B30.2/SPRY domain-containing family proteins. The structure is a bent β-sandwich, consisting of two seven-stranded β-sheets wrapped around a long loop that extends from the centre strands of the inner or concave β-sheet; it closely matches those of GUSTAVUS and SSB-4. The structure is also similar to those of two recently determined Neuralized homology repeat (NHR) domains (also known as NEUZ domains), with detailed comparisons, suggesting that the NEUZ/NHR domains form a subclass of SPRY domains. The binding site on SSB-2 for the prostate apoptosis response-4 (Par-4) protein has been mapped in finer detail using mutational analyses. Moreover, SSB-1 was shown to have a Par-4 binding surface similar to that identified for SSB-2. Structural perturbations of SSB-2 induced by mutations affecting its interaction with Par-4 and/or c-Met have been characterised by NMR. These comparisons, in conjunction with previously published dynamics data from NMR relaxation studies and coarse-grained dynamics simulation using normal mode analysis, further refine our understanding of the structural basis for protein recognition of SPRY domain-containing proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号