首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Emerging evidence suggests a cardioprotective role of the angiotensin AT2R, albeit the underlying cellular mechanisms are not well understood. We aimed in this article to elucidate a potential role of cardiac angiotensin AT2R in regulating cellular immune response to ischemic heart injury. Seven days after myocardial infarction in rats, double-immunofluorescence staining showed that AT2R was detected in a fraction of CD8(+) T cells infiltrating in the peri-infarct myocardium. We developed a method that allowed the isolation of myocardial infiltrating CD8(+)AT2R(+) T cells using modified MACS, and further characterization and purification with flow cytometry. Although the CD8(+)AT2R(-) T cells exhibited potent cytotoxicity to both adult and fetal cardiomyocytes (CMs), the CD8(+)AT2R(+) T cells were noncytotoxic to these CMs. The CD8(+)AT2R(+) T cells were characterized by upregulated IL-10 and downregulated IL-2 and INF-γ expression when compared with CD8(+)AT2R(-) T cells. We further showed that IL-10 gene expression was enhanced in CD8(+) T cells on in vitro AT2R stimulation. Importantly, in vivo AT2R activation engendered an increment of CD8(+)AT2R(+) T cells and IL-10 production in the ischemic myocardium. In addition, intramyocardial transplantation of CD8(+)AT2R(+) T cells (versus CD8(+)AT2R(-)) led to reduced ischemic heart injury. Moreover, the CD8(+)AT2R(+) T cell population was also demonstrated in human peripheral blood. Thus, we have defined the cardioprotective CD8(+)AT2R(+) T cell population, which increases during ischemic heart injury and contributes to maintaining CM viability and providing IL-10, hence revealing an AT2R-mediated cellular mechanism in modulating adaptive immune response in the heart.  相似文献   

3.
Zeng H  Li L  Chen JX 《PloS one》2012,7(4):e35905
Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts.  相似文献   

4.
Endogenous progenitor cells may participate in cardiac repair after a myocardial infarction (MI). The beta 2 adrenergic receptor (ß2-AR) pathway induces proliferation of c-kit+ cardiac progenitor cells (CPC) in vitro. We investigated if ß2-AR pharmacological stimulation could ameliorate endogenous CPC-mediated regeneration after a MI. C-kit+ CPC ß1-AR and ß2-AR expression was evaluated in vivo and in vitro. A significant increase in the percentage of CPCs expressing ß1-AR and ß2-AR was measured 7 days post-MI. Accordingly, 24 hrs of low serum and hypoxia in vitro significantly increased CPC ß2-AR expression. Cell viability and differentiation assays validated a functional role of CPC ß2-AR. The effect of pharmacological activation of ß2-AR was studied in C57 mice using fenoterol administered in the drinking water 1 week before MI or sham surgery or at the time of the surgery. MI induced a significant increase in the percentage of c-kit+ progenitor cells at 7 days, whereas pretreatment with fenoterol prolonged this response resulting in a significant elevated number of CPC up to 21 days post-MI. This increased number of CPC correlated with a decrease in infarct size. The immunofluorescence analysis of the heart tissue for proliferation, apoptosis, macrophage infiltration, cardiomyocytes surface area, and vessel density showed significant changes on the basis of surgery but no benefit due to fenoterol treatment. Cardiac function was not ameliorated by fenoterol administration when evaluated by echocardiography. Our results suggest that ß2-AR stimulation may improve the cardiac repair process by supporting an endogenous progenitor cell response but is not sufficient to improve the cardiac function.  相似文献   

5.

Background

The therapeutic efficiency of bone marrow mononuclear cells (BMMNCs) autologous transplantation for myocardial infarction (MI) remains low. Here we developed a novel strategy to improve cardiac repair by preconditioning BMMNCs via angiotensin II type 2 receptor (AT2R) stimulation.

Methods and Results

Acute MI in rats led to a significant increase of AT2R expression in BMMNCs. Preconditioning of BMMNCs via AT2R stimulation directly with an AT2R agonist CGP42112A or indirectly with angiotensin II plus AT1R antagonist valsartan led to ERK activation and increased eNOS expression as well as subsequent nitric oxide generation, ultimately improved cardiomyocyte protection in vitro as measured by co-culture approach. Intramyocardial transplantation of BMMNCs preconditioned via AT2R stimulation improved survival of transplanted cells in ischemic region of heart tissue and reduced cardiomyocyte apoptosis and inflammation at 3 days after MI. At 4 weeks after transplantation, compared to DMEM and non-preconditioned BMMNCs group, AT2R stimulated BMMNCs group showed enhanced vessel density in peri-infarct region and attenuated infarct size, leading to global heart function improvement.

Conclusions

Preconditioning of BMMNCs via AT2R stimulation exerts protective effect against MI. Stimulation of AT2R in BMMNCs may provide a new strategy to improving therapeutic efficiency of stem cells for post MI cardiac repair.  相似文献   

6.
Cardiac c-kit positive cells are cardiac-derived cells that exist within the heart and have a great many protective effects. The senescence of cardiac c-kit positive cells probably leads to cell dysfunction. Bradykinin plays a key role in cell protection. However, whether bradykinin prevents cardiac c-kit positive cells from high-glucose-induced senescence is unknown. Here, we found that glucose treatment causes the premature senescence of cardiac c-kit positive cells. Bradykinin B2 receptor (B2R) expression was declined by glucose-induced senescence. Bradykinin treatment inhibited senescence and reduced intracellular oxygen radicals according to senescence-associated β-galactosidase staining and 2′,7′-dichlorodihydrofluorescein diacetate staining. Moreover, the mitochondrial membrane potential was damaged, as measured by JC-1 staining. The mitochondrial membrane potential was preserved under bradykinin treatment. The concentration of superoxide was decreased, and the concentration of intracellular adenosine triphosphate was increased after bradykinin treatment. Western blot showed that bradykinin leads to AKT and mammalian target of rapamycin (mTOR) phosphorylation and decreased levels of P53 and P16 when compared with glucose treatment alone. Antagonists of B2R, phosphoinositide 3-kinase (PI3K), mTOR, and B2R small interfering RNA prevented the protective effect of bradykinin. P53 antagonist also inhibited the glucose-induced senescence of cardiac c-kit positive cells. In conclusion, bradykinin prevents the glucose-induced premature senescence of cardiac c-kit positive cells through the B2R/PI3K/AKT/mTOR/P53 signal pathways.  相似文献   

7.
Bai X  Sadat S  Gehmert S  Alt E  Song YH 《FEBS letters》2007,581(24):4681-4684
It is known that c-kit(+) cells are increased in heart after infarction. The exact origins of the cardiac c-kit(+) cells remain to be determined. We asked whether adipose tissue could be a potential source of c-kit(+) cells. Our data show that the number of c-kit(+) cells increased in adipose tissue derived stem cells when cultured with conditioned medium from neonatal cardiomyocytes grown under serum deprivation and hypoxia condition. We also found that VEGF receptor Flk-1 is involved in c-kit up regulation via ERK-mediated pathway.  相似文献   

8.
The objective of this study was to determine the effects of primary simian immunodeficiency virus (SIV) infection on the prevalence and phenotype of progenitor cells present in the gastrointestinal epithelia of SIV-infected rhesus macaques, a primate model for human immunodeficiency virus pathogenesis. The gastrointestinal epithelium was residence to progenitor cells expressing CD34 antigen, a subset of which also coexpressed Thy-1 and c-kit receptors, suggesting that the CD34(+) population in the intestine comprised a subpopulation of primitive precursors. Following experimental SIVmac251 infection, an early increase in the proportions of CD34(+) Thy-1(+) and CD34(+) c-kit+ progenitor cells was observed in the gastrointestinal epithelium. In contrast, the proportion of CD34(+) cells in the thymus declined during primary SIV infection, which was characterized by a decrease in the frequency of CD34(+) Thy-1(+) progenitor cells. A severe depletion in the frequency of CD4-committed CD34(+) progenitors was observed in the gastrointestinal epithelium 2 weeks after SIV infection which persisted even 4 weeks after infection. A coincident increase in the frequency of CD8- committed CD34(+) progenitor cells was observed during primary SIV infection. These results indicate that in contrast to the primary lymphoid organs such as the thymus, the gastrointestinal epithelium may be an early extrathymic site for the increased prevalence of both primitive and committed CD34(+) progenitor cells. The gastrointestinal epithelium may potentially play an important role in maintaining T-cell homeostasis in the intestinal mucosa during primary SIV infection.  相似文献   

9.
肾素-血管紧张素-醛固酮系统起初被认为是较简单的神经体液调节机制之一。但是,这一想法随着RAAS阻滞剂:肾素阻滞剂、血管紧张素转换酶抑制剂(ACEI)、AT1受体拮抗剂及盐皮质激素受体拮抗剂的深入研究而受到挑战。因此,RAAS的组成、以上药物发挥作用的具体通路及副作用均得到重新定义。在RAAS阻滞剂的应用过程中,机体肾素水平升高,并刺激肾素原受体(即无活性的肾素前体,PRR),进而对机体造成不良影响。同理,在AT1受体拮抗剂的应用过程中,血浆血管紧张素II的水平升高,并与2型血管紧张素II(AT2)受体结合,进而对机体产生有利作用。此外,随着ACEI及ARB的应用,血管紧张素1-7水平升高,其与Mas受体结合,发挥心脏及肾脏保护的作用,还可通过刺激干细胞发挥组织修复作用。  相似文献   

10.

Background

Cardiac progenitor cells (CPCs) have been proven suitable for stem cell therapy after myocardial infarction, especially c-kit(+)CPCs. CPCs marker c-kit and its ligand, the stem cell factor (SCF), are linked as c-kit/SCF axis, which is associated with the functions of proliferation and differentiation. In our previous study, we found that stromal cell-derived factor-1α (SDF-1α) could enhance the expression of c-kit. However, the mechanism is unknown.

Methods and Results

CPCs were isolated from adult mouse hearts, c-kit(+) and c-kit(−) CPCs were separated by magnetic beads. The cells were cultured with SDF-1α and CXCR4-selective antagonist AMD3100, and c-kit expression was measured by qPCR and Western blotting. Results showed that SDF-1α could enhance c-kit expression of c-kit(+)CPCs, made c-kit(−)CPCs expressing c-kit, and AMD3100 could inhibit the function of SDF-1α. After the intervention of SDF-1α and AMD3100, proliferation and migration of CPCs were measured by CCK-8 and transwell assay. Results showed that SDF-1α could enhance the proliferation and migration of both c-kit(+) and c-kit(−) CPCs, and AMD3100 could inhibit these functions. DNA methyltransferase (DNMT) mRNA were measured by qPCR, DNMT activity was measured using the DNMT activity assay kit, and DNA methylation was analyzed using Sequenom''s MassARRAY platform, after the CPCs were cultured with SDF-1α. The results showed that SDF-1α stimulation inhibited the expression of DNMT1 and DNMT3β, which are critical for the maintenance of regional DNA methylation. Global DNMT activity was also inhibited by SDF-1α. Lastly, SDF-1α treatment led to significant demethylation in both c-kit(+) and c-kit(−) CPCs.

Conclusions

SDF-1α combined with CXCR4 could up-regulate c-kit expression of c-kit(+)CPCs and make c-kit(−)CPCs expressing c-kit, which result in the CPCs proliferation and migration ability improvement, through the inhibition of DNMT1 and DNMT3β expression and global DNMT activity, as well as the subsequent demethylation of the c-kit gene.  相似文献   

11.
In the past few years it has been established that the heart contains a reservoir of stem and progenitor cells that have the ability to differentiate in vitro and in vivo toward vascular and cardiac lineages and that show cardiac regeneration potential in vivo following injection into the infracted myocardium. The aim of the present study was to characterize cardiac stem cells in the tissue of chronic left ventricular aneurism. It was shown that human c-kit positive cells were scattered in fibrous, muscle and adipose parts of aneurism tissue. C-kit positive cells localized mainly in fibrous tissue nearby large vessels, however, c-kit positive cells did not express endothelial, smooth muscle or cardiomyocyte cell markers. Co-localization experiments demonstrated that all c-kit positive cells were of non-hematopoietic origin, since they did not express markers such as CD34 and CD45. Majority of c-kit positive cells expressed MDR1, but showed no proliferation activity (Ki67). It thus appears that aneurism tissue could be an alternative source of autologous cardiac stem cells. However, their regeneration capacity should be further explored.  相似文献   

12.
Although clinical benefit can be achieved after cardiac transplantation of adult c-kit+ or cardiosphere-derived cells for myocardial repair, these stem cells lack the regenerative capacity unique to neonatal cardiovascular stem cells. Unraveling the molecular basis for this age-related discrepancy in function could potentially transform cardiovascular stem cell transplantation. In this report, clonal populations of human neonatal and adult cardiovascular progenitor cells were isolated and characterized, revealing the existence of a novel subpopulation of endogenous cardiovascular stem cells that persist throughout life and co-express both c-kit and isl1. Epigenetic profiling identified 41 microRNAs whose expression was significantly altered with age in phenotypically-matched clones. These differences were correlated with reduced proliferation and a limited capacity to invade in response to growth factor stimulation, despite high levels of growth factor receptor on progenitors isolated from adults. Further understanding of these differences may provide novel therapeutic targets to enhance cardiovascular regenerative capacity.  相似文献   

13.
Background. In recent years, resident cardiac progenitor cells have been identified in, and isolated from the rodent heart. These cells show the potential to form cardiomyocytes, smooth muscle cells, and endothelial cells in vitro and in vivo and could potentially be used as a source for cardiac repair. However, previously described cardiac progenitor cell populations show immature development and need co-culture with neonatal rat cardiomyocytes in order to differentiate in vitro. Here we describe the localisation, isolation, characterisation, and differentiation of cardiomyocyte progenitor cells (CMPCs) isolated from the human heart. Methods. hCMPCs were identified in human hearts based on Sca-1 expression. These cells were isolated, and FACS, RT-PCR and immunocytochemistry were used to determine their baseline characteristics. Cardiomyogenic differentiation was induced by stimulation with 5-azacytidine. Results. hCMPCs were localised within the atria, atrioventricular region, and epicardial layer of the foetal and adult human heart. In vitro, hCMPCs could be induced to differentiate into cardiomyocytes and formed spontaneously beating aggregates, without the need for co-culture with neonatal cardiomyocytes. Conclusion. The human heart harbours a pool of resident cardiomyocyte progenitor cells, which can be expanded and differentiated in vitro. These cells may provide a suitable source for cardiac regeneration cell therapy. (Neth Heart J 2008;16: 163-9.)  相似文献   

14.
15.
Cannabinoid receptor type 2(CB2)activation is recently reported to promote proliferation of some types of resident stem cells(e.g.,hematopoietic stem/progenitor cell or neural progenitor cell).Resident cardiac progenitor cell(CPC)activation and proliferation are crucial for endogenous cardiac regeneration and cardiac repair after myocardial infarction(MI).This study aims to explore the role and possible mechanisms of CB2receptor activation in enhancing myocardial repair.Our results revealed that CB2receptor agonist AM1241 can significantly increase CPCs by c-kit and Runx1 staining in ischemic myocardium as well as improve cardiomyocyte proliferation.AM1241 also decreased serum levels of MDA,TNF-αand IL-6 after MI.In addition,AM1241 can ameliorate left ventricular ejection fraction and fractional shortening,and reduce fibrosis.Moreover,AM1241 treatment markedly increased p-Akt and HO-1 expression,and promoted Nrf-2 nuclear translocation.However,PI3K inhibitor wortmannin eliminated these cardioprotective roles of AM1241.In conclusion,AM1241 could induce myocardial regeneration and improve cardiac function,which might be associated with PI3K/Akt/Nrf2 signaling pathway activation.Our findings may provide a promising strategy for cardiac endogenous regeneration after MI.  相似文献   

16.
In ischemia, cardiac sympathetic nerve endings (cSNE) release excessive amounts of norepinephrine (NE) via the nonexocytotic Na(+)-dependent NE transporter (NET). NET, normally responsible for NE reuptake into cSNE, reverses in myocardial ischemia, releasing pathological amounts of NE. This carrier-mediated NE release can be triggered by elevated intracellular Na(+) levels in the axoplasm. The fact that ischemia activates the intracellular pH regulatory Na(+)/H(+) exchanger (NHE) in cSNE is pivotal in increasing intraneuronal Na(+) and thus activating carrier-mediated NE release. Angiotensin (ANG) II levels are also significantly elevated in the ischemic heart. However, the effects of ANG II on cSNE, which express the ANG II receptor, AT(1)R, are poorly understood. We hypothesized that ANG II-induced AT(1)R activation in cSNE may be positively coupled to NHE activity and thereby facilitate the pathological release of NE associated with myocardial ischemia. We tested this hypothesis in a cSNE model, human neuroblastoma cells stably transfected with rat recombinant AT(1A) receptor (SH-SY5Y-AT(1A)). SH-SY5Y-AT(1A) constitutively expresses amiloride-sensitive NHE and the NET. NHE activity was assayed in BCECF-loaded SH-SY5Y-AT(1A) as the rate of the Na(+)-dependent alkalinization in response to an acute acidosis. ANG II activation of AT(1)R markedly increased NHE activity in SH-SY5Y-AT(1A) via a Ca(2+)-dependent pathway and promoted carrier-mediated NE release. In addition, in guinea pig cSNE expressing native AT(1)R, ANG II elicited carrier-mediated NE release. In SH-SY5Y-AT(1A) and cSNE, amiloride inhibited the ANG II-mediated release of NE. Our results provide a link between AT(1)R and NHE in cSNE, which can exacerbate carrier-mediated NE release during protracted myocardial ischemia.  相似文献   

17.
Transgenic mice that overexpress human type 1 angiotensin II receptor (AT(1)R) in the heart develop cardiac hypertrophy. Previously, we have shown that in 6-mo AT(1)R mice, which exhibit significant cardiac remodeling, fractional shortening is decreased. However, it is not clear whether altered contractility is attributable to AT(1)R overexpression or is secondary to cardiac hypertrophy/remodeling. Thus the present study characterized the effects of AT(1)R overexpression on ventricular L-type Ca(2+) currents (I(CaL)), cell shortening, and Ca(2+) handling in 50-day and 6-mo-old male AT(1)R mice. Echocardiography showed there was no evidence of cardiac hypertrophy in 50-day AT(1)R mice but that fractional shortening was decreased. Cellular experiments showed that cell shortening, I(CaL), and Ca(v)1.2 mRNA expression were significantly reduced in 50-day and 6-mo-old AT(1)R mice compared with controls. In addition, Ca(2+) transients and caffeine-induced Ca(2+) transients were reduced whereas the time to 90% Ca(2+) transient decay was prolonged in both age groups of AT(1)R mice. Western blot analysis revealed that sarcoplasmic reticulum Ca(2+)-ATPase and Na(+)/Ca(2+) exchanger protein expression was significantly decreased in 50-day and 6-mo AT(1)R mice. Overall, the data show that cardiac contractility and the mechanisms that underlie excitation-contraction coupling are altered in AT(1)R mice. Furthermore, since the alterations in contractility occur before the development of cardiac hypertrophy, it is likely that these changes are attributable to the increased activity of the renin-angiotensin system brought about by AT(1)R overexpression. Thus it is possible that AT(1)R blockade may help maintain cardiac contractility in individuals with heart disease.  相似文献   

18.
The present study aimed to define the ability of erythropoietin (EPO) to mobilize hematopoietic stem cells (c-kit(+)/sca-1(+)/lin-1(-); KSL-cells) and hematopoietic progenitor cells (CD34(+) cells), including vascular endothelial growth factor receptor 2 expressing hematopoietic progenitor cells (CD34(+)/Flk-1(+) cells). We also sought to determine the role of endothelial nitric oxide synthase (eNOS) in EPO-induced mobilization. Wild type (WT) and eNOS(-/-) mice were injected bi-weekly with recombinant erythropoietin (EPO, 1000U/kg, s.c.) for 14 days. EPO increased the number of KSL, CD34(+), CD34(+)/Flk-1(+) cells in circulating blood of wild type mice. These effects of EPO were abolished in eNOS(-/-) mice. Our results demonstrate that, EPO stimulates mobilization of hematopoietic stem and progenitor cells. This effect of EPO is critically dependent on activation of eNOS.  相似文献   

19.
Myocardial infarction results in loss of cardiomyocytes, scar formation, ventricular remodelling, and eventually heart failure. In recent years, cell therapy has emerged as a potential new strategy for patients with ischaemic heart disease. This includes embryonic and bone marrow derived stem cells. Recent clinical studies showed ostensibly conflicting results of intracoronary infusion of autologous bone marrow derived stem cells in patients with acute or chronic myocardial infarction. Anyway, these results have stimulated additional clinical and pre-clinical studies to further enhance the beneficial effects of stem cell therapy. Recently, the existence of cardiac stem cells that reside in the heart itself was demonstrated. Their discovery has sparked intense hope for myocardial regeneration with cells that are obtained from the heart itself and are thereby inherently programmed to reconstitute cardiac tissue. These cells can be detected by several surface markers (e.g. c-kit, Sca-1, MDR1, Isl-1). Both in vitro and in vivo differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells has been demonstrated, and animal studies showed promising results on improvement of left ventricular function. This review will discuss current views regarding the feasibility of cardiac repair, and focus on the potential role of the resident cardiac stem and progenitor cells. (Neth Heart J 2009;17:199–207.)  相似文献   

20.
We have previously shown that the common progenitors for myeloid, T, and B cell lineages are enriched in the earliest population of murine fetal liver. However, it remained unclear whether such multipotent progenitors represent the pluripotent progenitors capable of generating all hemopoietic cells or they also comprise progenitors restricted to myeloid, T, and B cell lineages. To address this issue, we have developed a new clonal assay covering myeloid, erythroid, T, and B cell lineages, and using this assay the developmental potential of individual cells in subpopulations of lineage marker-negative (Lin(-)) c-kit(+) murine fetal liver cells was investigated. We identified the progenitor generating myeloid, T, and B cells, but not erythroid cells in the Sca-1(high) subpopulation of Lin(-)c-kit(+) cells that can thus be designated as the common myelolymphoid progenitor (CMLP). Common myeloerythroid progenitors were also detected. These findings strongly suggest that the first branching point in fetal hemopoiesis is between the CMLP and common myeloerythroid progenitors. T and B cell progenitors may be derived from the CMLP through the previously identified myeloid/T and myeloid/B bipotent stages, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号