首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potato tuber constitutes a model system for the study of dormancy release and sprouting, suggested to be regulated by endogenous plant hormones and their balance inside the tuber. During dormancy, potato tubers cannot be induced to sprout without some form of stress or exogenous hormone treatment. When dormancy is released, sprouting of the apical bud may be inhibited by sprout control agents or cold temperature. Dominance of the growing apical bud over other lateral buds decreases during storage and is one of the earliest morphophysiological indicators of the tuber's physiological age. Three main types of loss of apical dominance (AD) affect sprouting shape. Hallmarks of programmed cell death (PCD) have been identified in the tuber apical bud meristem (TAB-meristem) during normal growth, and are more extensive when AD is lost following extended cold storage or chemical stress. Nevertheless, the role of hormonal regulation in TAB-meristem PCD remains unclear.  相似文献   

2.
The potato (Solanum tuberosum L.) tuber is a swollen underground stem that can sprout in an apical dominance (AD) pattern. Bromoethane (BE) induces loss of AD and the accumulation of vegetative vacuolar processing enzyme (S. tuberosum vacuolar processing enzyme [StVPE]) in the tuber apical meristem (TAM). Vacuolar processing enzyme activity, induced by BE, is followed by programmed cell death in the TAM. In this study, we found that the mature StVPE1 (mVPE) protein exhibits specific activity for caspase 1, but not caspase 3 substrates. Optimal activity of mVPE was achieved at acidic pH, consistent with localization of StVPE1 to the vacuole, at the edge of the TAM. Downregulation of StVPE1 by RNA interference resulted in reduced stem branching and retained AD in tubers treated with BE. Overexpression of StVPE1 fused to green fluorescent protein showed enhanced stem branching after BE treatment. Our data suggest that, following stress, induction of StVPE1 in the TAM induces AD loss and stem branching.  相似文献   

3.
Ethanol breaks dormancy of the potato tuber apical bud   总被引:1,自引:0,他引:1  
Growing potato tubers or freshly harvested mature tubers have a dormant apical bud. Normally, this dormancy is spontaneously broken after a period of maturation of the tuber, resulting in the growth of a new sprout. Here it is shown that in in vitro-cultured growing and maturing tubers, ethanol can rapidly break this dormancy and re-induce growth of the apical bud. The in vivo promoter activity of selected genes during this secondary growth of the apical bud was monitored, using luciferase as a reporter. In response to ethanol, the expression of carbohydrate-storage, protein-storage, and cell division-related genes are rapidly down-regulated in tuber tissue. It was shown that dormancy was broken by primary but not by secondary alcohols, and the effect of ethanol on sprouting and gene expression in tuber tissue was blocked by an inhibitor of alcohol dehydrogenase. By contrast, products derived from alcohol dehydrogenase activity (acetaldehyde and acetic acid) did not induce sprouting, nor did they affect luciferase reporter gene activity in the tuber tissue. Application of an inhibitor of gibberellin biosynthesis had no effect on ethanol-induced sprouting. It is suggested that ethanol-induced sprouting may be related to an alcohol dehydrogenase-mediated increase in the catabolic redox charge [NADH/(NADH+NAD+)].  相似文献   

4.
Sprouting of potatoes during storage, due to tuber dormancy release, is associated with weight loss and softening. Sprout-preventing chemicals, such as chlorpropham (CIPC), can negatively impact the environment and human health. Monthly thermal fogging with mint (Mentha spicata L.) essential oil (MEO) inhibited sprouting in eight potato cultivars during large-volume 6-month storage: the tubers remained firm with 38% lower weight loss after 140 days of storage. The sprout-inhibitory action may be nullified: treated tubers washed with water resumed sprouting within days, with reduced apical dominance. MEO application caused local necrosis of the bud meristem, and a few weeks later, axillary bud (AX) growth was induced in the same sprouting eye. MEO components analysis showed that 73% of its content is the monoterpene R-carvone. Tubers treated with synthetic R-carvone in equivalent dose, 4.5 μl l−1, showed an inhibitory effect similar to that of MEO. Surprisingly, 0.5 μl l−1 of MEO or synthetic R-carvone catalyzed AX sprouting in the tuber. To the best of our knowledge, this is the first report of an essential oil vapor inducing early sprouting of potato tubers. R-carvone caused visible damage to the meristem membrane at sprout-inhibiting, but not sprout-inducing doses, suggesting different underlying mechanisms. After 5 days’ exposure to R-carvone, its derivatives transcarveol and neo-dihydrocarveol were found in buds of tubers treated with the inhibitory dose, suggesting biodegradation. These experiments demonstrate the potential of MEO vapor as an environmentally friendly alternative to CIPC in stored potatoes and as a research tool for the control of sprouting in plants.  相似文献   

5.
The length of potato tuber dormancy depends on both the genotype and the environmental conditions during growth and storage. Abscisic acid (ABA) has been shown to play a critical role in tuber dormancy control but the mechanisms regulating ABA content during dormancy, as well as the sites of ABA synthesis, and catabolism are unknown. Recently, a temporal correlation between changes in ABA content and certain ABA biosynthetic and catabolic genes has been reported in stored field tubers during physiological dormancy progression. However, the protracted length of natural dormancy progression complicated interpretation of these data. To address this issue, in this study the synthetic dormancy-terminating agent bromoethane (BE) was used to induce rapid and highly synchronous sprouting of dormant tubers. The endogenous ABA content of tuber meristems increased 2-fold 24 h after BE treatment and then declined dramatically. By 7 d post-treatment, meristem ABA content had declined by >80%. Exogenous [(3)H]ABA was readily metabolized by isolated meristems to phaseic and dihydrophaseic acids. BE treatment resulted in an almost 2-fold increase in the rate of ABA metabolism. A differential expression of both the StNCED and StCYP707A gene family members in meristems of BE-treated tubers is consistent with a regulatory role for StNCED2 and the StCYP707A1 and StCYP707A2 genes. The present results show that the changes in ABA content observed during tuber dormancy progression are the result of a dynamic equilibrium of ABA biosynthesis and degradation that increasingly favours catabolism as dormancy progresses.  相似文献   

6.
The apical dominance in dormant tubers ofCircaea intermedia preventing the extension of lateral buds under favourable conditions differs from the apically directed growth inhibition inducing true dormancy in the tubers. This acropetal inhibition affects the tuber tip more strongly than its lateral buds, which develop into long stolon-like shoots after the tuber decapitation. The local supply of ABA shows no tuberizing effect, but enhances the dormancy of the tuber top. MH interrupts the correlation between the tuber laterals tuberizing without previous stolon formation. The uppermost leaf structures participate in the apical dominance, inhibiting their own axillaries on intact tubers. Mature scales disclose this correlative influence only on decapitated or dissected tubers on which IAA or BA release their inhibitory effect, but ABA increases it. Two scale pairs occurring regularly at the top of dormant tubers and seen later at the erect base of the stem are involved in the initiation of foliage leaves for the next-year growth period. BA applied to an axil at the top of the tuber provokes its sylleptic branching.  相似文献   

7.
Activities of enzymes presumably involved in starch biosynthesis (ADP-glucose pyrophosphorylase, AGPase) and/or breakdown (starch phosphorylase, STP; amylases) were determined during potato (Solanum tuberosum L.) tuber dormancy and sprouting. Overall activities of all these enzymes decreased during the first stage of tuber dormancy. No clear changes were detected at the time of dormancy breaking and sprouting. However, when AGPase activity was monitored by in situ staining during the entire dormancy period, a clear decrease during the dormant period and a large increase before visible sprouting could be observed. This increase was especially evident near the vascular tissue and at the apical bud, which showed a very intensive staining. In situ staining of STP activity in sprouting tubers showed that the tissue distribution of STP was the same as for AGPase. As a possible explanation, direct starch cycling is suggested: STP produces glucose-1-phosphate during starch breakdown, which can be directly used as a substrate by AGPase for starch synthesis. Gene expression studies with the AGPaseS promoter coupled to the firefly luciferase reporter gene also clearly showed a higher activity in sprouting tubers as compared to dormant tubers, with the highest expression levels observed around the apical buds. The presence of amylase activity at dormancy initiation and AGPase activity persistent at the sprouting stage suggest that starch was cycling throughout the entire dormancy period. According to the in situ studies, the AGPase activity increased well before visible sprout growth and could therefore be one of the first physiological determinants of dormancy breakage.  相似文献   

8.
To gain greater insight into the mechanism of dormancy release in the potato tuber, an investigation into physiological and biochemical changes in tuber and bud tissues during the transition from bud dormancy (immediately after harvest) to active bud growth was undertaken. Within the tuber, a rapid shift from storage metabolism (starch synthesis) to reserve mobilization within days of detachment from the mother plant suggested transition from sink to source. Over the same period, a shift in the pattern of [U-(14)C]sucrose uptake by tuber discs from diffuse to punctate accumulation was consistent with a transition from phloem unloading to phloem loading within the tuber parenchyma. There were no gross differences in metabolic capacity between resting and actively growing tuber buds as determined by [U-(14)C]glucose labelling. However, marked differences in metabolite pools were observed with large increases in starch and sucrose, and the accumulation of several organic acids in growing buds. Carboxyfluorescein labelling of tubers clearly demonstrated strong symplastic connection in actively growing buds and symplastic isolation in resting buds. It is proposed that potato tubers rapidly undergo metabolic transitions consistent with bud outgrowth; however, growth is initially prevented by substrate limitation mediated via symplastic isolation.  相似文献   

9.
10.
Potato tubers were engineered to express a bacterial gene encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS) in order to investigate the effects of perturbation of isoprenoid biosynthesis. Twenty-four independent transgenic lines out of 38 generated produced tubers with significantly elongated shape that also exhibited an early tuber sprouting phenotype. Expression analysis of nine transgenic lines (four exhibiting the phenotype and five showing a wild-type phenotype) demonstrated that the phenotype was strongly associated with dxs expression. At harvest, apical bud growth had already commenced in dxs-expressing tubers whereas in control lines no bud growth was evident until dormancy was released after 56-70 d of storage. The initial phase of bud growth in dxs tubers was followed by a lag period of approximately 56 d, before further elongation of the developing sprouts could be detected. Thus dxs expression results in the separation of distinct phases in the dormancy and sprouting processes. In order to account for the sprouting phenotype, the levels of plastid-derived isoprenoid growth regulators were measured in transgenic and control tubers. The major difference measured was an increase in the level of trans-zeatin riboside in tubers at harvest expressing dxs. Additionally, compared with controls, in some dxs-expressing lines, tuber carotenoid content increased approximately 2-fold, with most of the increase accounted for by a 6-7-fold increase in phytoene.  相似文献   

11.
Regulation of potato tuber sprouting   总被引:1,自引:0,他引:1  
  相似文献   

12.
The effects of post-harvest storage and dormancy progression on histone acetylation patterns were examined in potato ( Solanum tuberosum L. cv. Russet Burbank) tubers. Storage of field-grown tubers at 3°C in the dark resulted in the progressive loss of tuber meristem dormancy, defined as measurable growth after transfer to 20°C for 7 days. Dormancy emergence was concomitant with sustained increases in histone H3.1 and H3.2 multi-acetylation, and with transient increases in H4 multi-acetylation that peaked 4–5 months post-harvest. Treatment of dormant tubers with bromoethane (BE) resulted in rapid loss of dormancy over 9 days. Similar to cold-stored field-grown tubers, dormancy break in BE-treated tubers occurred at the same time as transient rises in H4 and H3.1/3.2 multi-acetylation, peaking at days 1 and 4, respectively. BE treatment also resulted in small increases in RNA synthesis at day 6, and a three-fold, sustained activation of DNA synthesis thereafter. A defined sequence of epigenetic events, beginning with previously characterized transient cytosine demethylation, followed by increased H3 and H4 histone acetylation and ultimately, tuber meristem re-activation, may thus exist in potatoes during dormancy exit and resumption of rapid growth.  相似文献   

13.
Identification of molecular markers defining the end of tuber dormancy prior to visible sprouting is of agronomic interest for potato growers and the potato processing industry. In potato tubers, breakage of dormancy is associated with the reactivation of meristem function. In dormant meristems, cells are arrested in the G1/G0 phase of the cell cycle and re-entry into the G1 phase followed by DNA replication during the S phase enables bud outgrowth. Deoxyuridine triphosphatase (dUTPase) is essential for DNA replication and was therefore tested as a potential marker for meristem reactivation in tuber buds. The corresponding cDNA clone was isolated from potato by PCR. The deduced amino acid sequence showed 94% similarity to the tomato homologue. By employing different potato cultivars, a positive correlation between dUTPase expression and onset of tuber sprouting could be confirmed. Moreover, gene expression analysis of tuber buds during storage time revealed an up-regulation of the dUTPase 1 week before visible sprouting occurred. Further analysis using an in vitro sprout assay supported the assumption that dUTPase is a good molecular marker to define the transition from dormant to active potato tuber meristems.  相似文献   

14.
The polyamines putrescine, spermidine, and spermine and their biosynthetic enzymes arginine decarboxylase, ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase are present in all parts of dormant potato (Solanum tuberosum L.) tubers. They are equally distributed among the buds of apical and lateral regions and in nonbud tissues. However, the breaking of dormancy and initiation of sprouting in the apical bud region are accompanied by a rapid increase in ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase activities, as well as by higher levels of putrescine, spermidine, and spermine in the apical buds. In contrast, the polyamine biosynthetic enzyme activities and titer remain practically unchanged in the dormant lateral buds and in the nonbud tissues. The rapid rise in ornithine decarboxylase, but not arginine decarboxylase activity, with initiation of sprouting suggests that ornithine decarboxylase is the rate-limiting enzyme in polyamine biosynthesis. The low level of polyamine synthesis during dormancy and its dramatic increase in buds in the apical region at break of dormancy suggest that polyamine synthesis is linked to sprouting, perhaps causally.  相似文献   

15.
16.
Regulation of potato tuber dormancy and sprouting   总被引:2,自引:0,他引:2  
Dormancy is the final stage of tuber life serving to preserve tubers as organs of vegetative reproduction under unfavorable growth conditions. Since the duration of potato tuber dormancy and their sprouting time have significant economic importance, much attention is given to the study of the regulation of these processes. This review considers metabolite, genetic, and hormonal aspects of regulation of potato (Solanum tuberosum L.) tuber dormancy and sprouting. Particular attention is paid to the relationship between processes occurring in different parts of the tuber: its storage tissues and buds. The interaction of hormonal and metabolite (carbohydrate) regulation of dormancy and sprouting is discussed.  相似文献   

17.
The effects of postharvest storage duration and temperature on endogenous cis -zeatin ( cis -Z) and cis -zeatin riboside ( cis -ZR) levels in potato ( Solanum tuberosum L.) tubers were determined in relation to tuber bud dormancy. The tubers used in these studies were completely dormant for at least 81 days of storage. Thereafter, tuber bud dormancy diminished gradually and after 165 days of postharvest storage, the tubers were completely non-dormant. Immediately after harvest, endogenous levels of cis- Z and cis -ZR were approximately 25 pmol (g fresh weight)−1 and 8 pmol (g fresh weight)−1, respectively. In tubers exiting dormancy but stored at a growth-inhibiting temperature (3°C), endogenous levels of cis -Z rose over threefold after 25 days of storage and remained elevated for the duration of the study. Levels of cis -ZR remained essentially constant during this same period. In tubers transferred to a growth permissive temperature (20°C) prior to use, the rise in endogenous cis -Z was less dramatic and more protracted; increasing twofold after 53 days of storage. No change in cis -Z riboside content was observed in these tubers during this period. Dose-response studies using either cis -Z or trans -Z demonstrated a time-dependent increase in cytokinin sensitivity during postharvest storage. Immediately after harvest, dormant tubers were insensitive to both zeatin isomers. Thereafter, tubers exhibited a dose-dependent increase in premature sprouting following injection with either cytokinin isomer. After injection into dormant tubers, cis -[8-14C]-zeatin was metabolized primarily to adenine/adenosine and cis -Z riboside. Seven days after injection, less than 10% of the recovered radioactivity was associated with trans -ZR. These results are consistent with a role for endogenous cis -Z (and its derivatives) in the regulation of potato tuber dormancy.  相似文献   

18.
Esashi Y 《Plant physiology》1973,51(3):504-507
Effects of O2 and some respiratory inhibitors on the induction and release of bud dormancy were examined with the aerial tubers of different ages of Begonia evansiana Andr. Oxygen was needed not only for tuber sprouting but also during the chilling process at 2 to 5 C to break tuber dormancy. If the mature tubers were exposed to blue light during the chilling period, their dormancy was strikingly released even by the chilling given under an O2 concentration as low as 3%. Blue light pretreatment promoted photo-sprouting of immature tubers only when given under lower O2 concentrations. On the other hand, red light became effective in inducing dormancy in the immature tubers and in prolonging dormancy in the mature tubers as O2 tension was increased. This was also the case with the induction of dormancy in the immature tubers by exposing them to a lower temperature (17 C) in the dark. The development of dormancy was suppressed by 2,4-dinitrophenol, p-nitrophenol, and sodium azide.  相似文献   

19.
20.
BACKGROUND AND AIMS: The control of dormancy in yam (Disocorea spp.) tubers is poorly understood and attempts to shorten the long dormant period (i.e. cause tubers to sprout or germinate much earlier) have been unsuccessful. The aim of this study was to identify and define the phases of dormancy in Dioscorea rotundata tubers, and to produce a framework within which dormancy can be more effectively studied. METHODS: Plants of 'TDr 131' derived from tissue culture were grown in a glasshouse simulating temperature and photoperiod at Ibadan (7 degrees N), Nigeria to produce tubers. Tubers were sampled on four occasions: 30 d before shoot senescence (149 days after planting, DAP), at shoot senescence (179 DAP), and twice during storage at a constant 25 degrees C (269 and 326 DAP). The development of the apical shoot bud was described from tissue sections. In addition, the responsiveness of shoot apical bud development to plant growth regulators (gibberellic acid, 2-chloroethanol and thiourea) applied to excised tuber sections was also examined 6 and 12 d after treatment. KEY RESULTS AND CONCLUSIONS: Three phases of tuber dormancy are proposed: Phase I, from tuber initiation to the appearance of the tuber germinating meristem; Phase II, from the tuber germinating meristem to initiation of foliar primordium; and Phase III, from foliar primordium to appearance of the shoot bud on the surface of the tuber. Phase I is the longest phase (approx. 220 d in 'TDr 131'), is not affected by PGRs and is proposed to be an endo-dormant phase. Phases II and III are shorter (<70 d in total), are influenced by PGRs and environmental conditions, and are therefore endo-/eco-dormant phases. To manipulate dormancy to allow off-season planting and more than one generation per year requires that the duration of Phase I is shortened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号