首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Function of the mammalian translocator protein (TSPO; previously known as the peripheral benzodiazepine receptor) remains unclear because its presumed role in steroidogenesis and mitochondrial permeability transition established using pharmacological methods has been refuted in recent genetic studies. Protoporphyrin IX (PPIX) is considered a conserved endogenous ligand for TSPO. In bacteria, TSPO was identified to regulate tetrapyrrole metabolism and chemical catalysis of PPIX in the presence of light, and in vertebrates, TSPO function has been linked to porphyrin transport and heme biosynthesis. Positive correlation between high TSPO expression in cancer cells and susceptibility to photodynamic therapy based on their increased ability to convert the precursor 5-aminolevulinic acid (ALA) to PPIX appeared to reinforce this mechanism. In this study, we used TSPO knock-out (Tspo−/−) mice, primary cells, and different tumor cell lines to examine the role of TSPO in erythropoiesis, heme levels, PPIX biosynthesis, phototoxic cell death, and mitochondrial bioenergetic homeostasis. In contrast to expectations, our results demonstrate that TSPO deficiency does not adversely affect erythropoiesis, heme biosynthesis, bioconversion of ALA to PPIX, and porphyrin-mediated phototoxic cell death. TSPO expression levels in cancer cells do not correlate with their ability to convert ALA to PPIX. In fibroblasts, we observed that TSPO deficiency decreased the oxygen consumption rate and mitochondrial membrane potential (ΔΨm) indicative of a cellular metabolic shift, without a negative impact on porphyrin biosynthetic capability. Based on these findings, we conclude that mammalian TSPO does not have a critical physiological function related to PPIX and heme biosynthesis.  相似文献   

2.
Gliomas are the most common brain tumours with a poor prognosis due to their aggressiveness and propensity for recurrence. The 18 kDa translocator protein (TSPO) has been demonstrated to be greatly expressed in glioma cells and its over-expression has been correlated with glioma malignance grades. Due to both its high density in tumours and the pro-apoptotic activity of its ligands, TSPO has been suggested as a promising target in gliomas. With the aim to evidence if the TSPO expression level alters glioma cell susceptibility to undergo to cell death, we analysed the effects of the specific TSPO ligand, PK 11195, in human astrocytoma wild-type and TSPO-silenced cell lines. As first step, TSPO was characterised in human astrocytoma cell line (ADF). Our data demonstrated the presence of a single class of TSPO binding sites highly expressed in mitochondria. PK 11195 cell treatment activated an autophagic pathway followed by apoptosis mediated by the modulation of the mitochondrial permeability transition. In TSPO-silenced cells, produced by siRNA technique, a reduced cell proliferation rate and a decreased cell susceptibility to the PK 11195-induced anti-proliferative effect and mitochondrial potential dissipation were demonstrated respect to control cells. In conclusion, for the first time, PK 11195 was demonstrated to differentially affect glioma cell survival in relation to TSPO expression levels. These results encourage the development of specific-cell strategies for the treatment of gliomas, in which TSPO is highly expressed respect to normal cells.  相似文献   

3.
Small molecule modulators of mitochondrial function have been attracted much attention in recent years due to their potential therapeutic applications for neurodegenerative diseases. The mitochondrial translocator protein (TSPO) is a promising target for such compounds, given its involvement in the formation of the mitochondrial permeability transition pore in response to mitochondrial stress. In this study, we performed a ligand-based pharmacophore design and virtual screening, and identified a potent hit compound, 7 (VH34) as a TSPO ligand. After validating its biological activity against amyloid-β (Aβ) induced mitochondrial dysfunction and in acute and transgenic Alzheimer’s disease (AD) model mice, we developed a library of analogs, and we found two most active compounds, 31 and 44, which restored the mitochondrial membrane potential, ATP production, and cell viability under Aβ-induced mitochondrial toxicity. These compounds recovered learning and memory function in acute AD model mice with improved pharmacokinetic properties.  相似文献   

4.
Tissue regeneration and homeostasis often require recruitment of undifferentiated precursors (adult stem cells; ASCs). While many ASCs continuously proliferate throughout the lifetime of an organism, others are recruited from a quiescent state to replenish their target tissue. A long‐standing question in stem cell biology concerns how long‐lived, non‐dividing ASCs regulate the transition between quiescence and proliferation. We study the melanocyte stem cell (MSC) to investigate the molecular pathways that regulate ASC quiescence. Our prior work indicated that GABA‐A receptor activation promotes MSC quiescence in larval zebrafish. Here, through pharmacological and genetic approaches we show that GABA‐A acts through calcium signaling to maintain MSC quiescence. Unexpectedly, we identified translocator protein (TSPO), a mitochondrial membrane‐associated protein that regulates mitochondrial function and metabolic homeostasis, as a parallel regulator of MSC quiescence. We found that both TSPO‐specific ligands and induction of gluconeogenesis likely act in the same pathway to promote MSC activation and melanocyte production in larval zebrafish. In contrast, TSPO and gluconeogenesis appear to act in parallel to GABA‐A receptor signaling to regulate MSC quiescence and vertebrate pigment patterning.  相似文献   

5.
Translocator protein (TSPO), formerly known as peripheral-type benzodiazepine receptor (PBR), has been described in several tissues and characterized as one of the main elements of steroidogenesis. However, TSPO is also involved in other pathways and cell functions, such as apoptosis regulation, protein import, membrane biogenesis, cell cycle regulation, oxygen homeostasis and mitochondrial membrane fluidity regulation. In the kidney, TSPO is normally located in the distal parts of the nephron from the thick ascending limb of the loop of Henle to the medullary collecting ducts. However when the kidney is submitted to a stress such as ischemia reperfusion injury there is a defined change in TSPO expression towards more proximal areas of the nephron, and the protein can be detected as high as proximal tubular cells and the Bowman Capsule. As the injury persists, TSPO is also located in invading mononucleated cells, in a pattern reproducing invasion by CD4+ helper T cells, and in the damaged vessels where TSPO is expressed both in endothelial and smooth muscle cells. Herein we review the potential use of TSPO-directed treatment for ischemia reperfusion injury, particularly regarding pre-conditioning of the organ. We also detail the relationship of proximal TSPO staining with the intensity of the injury, particularly the implication of monomeric (18 kDa) TSPO and its role in hypoxia-reoxygenation and apoptosis prevention. The potential implications of the protein with regeneration processes activated in response to injury and their relation with embryogenesis pathways are discussed.  相似文献   

6.
The voltage dependent anion channel (VDAC), located in the outer mitochondrial membrane, functions as a major channel allowing passage of small molecules and ions between the mitochondrial inter-membrane space and cytoplasm. Together with the adenine nucleotide translocator (ANT), which is located in the inner mitochondrial membrane, the VDAC is considered to form the core of a mitochondrial multiprotein complex, named the mitochondrial permeability transition pore (MPTP). Both VDAC and ANT appear to take part in activation of the mitochondrial apoptosis pathway. Other proteins also appear to be associated with the MPTP, for example, the 18 kDa mitochondrial Translocator Protein (TSPO), Bcl-2, hexokinase, cyclophylin D, and others. Interactions between VDAC and TSPO are considered to play a role in apoptotic cell death. As a consequence, due to its apoptotic functions, the TSPO has become a target for drug development directed to find treatments for neurodegenerative diseases and cancer. In this context, TSPO appears to be involved in the generation of reactive oxygen species (ROS). This generation of ROS may provide a link between activation of TSPO and of VDAC, to induce activation of the mitochondrial apoptosis pathway. ROS are known to be able to release cytochrome c from cardiolipins located at the inner mitochondrial membrane. In addition, ROS appear to be able to activate VDAC and allow VDAC mediated release of cytochrome c into the cytosol. Release of cytochrome c from the mitochondria forms the initiating step for activation of the mitochondrial apoptosis pathway. These data provide an understanding regarding the mechanisms whereby VDAC and TSPO may serve as targets to modulate apoptotic rates. This has implications for drug design to treat diseases such as neurodegeneration and cancer.  相似文献   

7.
The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltage-dependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1.  相似文献   

8.
《Autophagy》2013,9(12):2279-2296
The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltage-dependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1.  相似文献   

9.
BACKGROUND INFORMATION: TSPO (translocator protein), previously known as PBR (peripheral-type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High-affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium-dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. RESULTS: Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam-binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, (3)H-labelled PK 11195, as shown by B(max) and K(d) values of 10.0+/-0.5 pmol/mg and 4.0+/-1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and alpha-adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K(+), Na(+), Cl(-) and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. CONCLUSIONS: High-affinity ligand binding to mitochondrial TSPO modulates neurotransmitter-induced salivary secretion by duct and mucous acinar cells of rat submandibular glands.  相似文献   

10.
11.
The transfer of cholesterol from the outer to the inner mitochondrial membrane is the rate-limiting step in hormone-induced steroid formation. To ensure that this step is achieved efficiently, free cholesterol must accumulate in excess at the outer mitochondrial membrane and then be transferred to the inner membrane. This is accomplished through a series of steps that involve various intracellular organelles, including lysosomes and lipid droplets, and proteins such as the translocator protein (18 kDa, TSPO) and steroidogenic acute regulatory (StAR) proteins. TSPO, previously known as the peripheral-type benzodiazepine receptor, is a high-affinity drug- and cholesterol-binding mitochondrial protein. StAR is a hormone-induced mitochondria-targeted protein that has been shown to initiate cholesterol transfer into mitochondria. Through the assistance of proteins such as the cAMP-dependent protein kinase regulatory subunit Iα (PKA-RIα) and the PKA-RIα- and TSPO-associated acyl-coenzyme A binding domain containing 3 (ACBD3) protein, PAP7, cholesterol is transferred to and docked at the outer mitochondrial membrane. The TSPO-dependent import of StAR into mitochondria, and the association of TSPO with the outer/inner mitochondrial membrane contact sites, drives the intramitochondrial cholesterol transfer and subsequent steroid formation. The focus of this review is on (i) the intracellular pathways and protein–protein interactions involved in cholesterol transport and steroid biosynthesis and (ii) the roles and interactions of these proteins in endocrine pathologies and neurological diseases where steroid synthesis plays a critical role.  相似文献   

12.
The mitochondrial 18 kDa Translocator Protein (TSPO) was first detected by its capability to bind benzodiazepines in peripheral tissues and later also in glial cells in the brain, hence its previous most common name peripheral benzodiazepine receptor (PBR). TSPO has been implicated in various functions, including apoptosis and steroidogenesis, among others. Various endogenous TSPO ligands have been proposed, for example: Diazepam Binding Inhibitor (DBI), triakontatetraneuropeptide (TTN), phospholipase A2 (PLA2), and protoporphyrin IX. However, the functional implications of interactions between the TSPO and its putative endogenous ligands still have to be firmly established. The TSPO has been suggested to interact with a mitochondrial protein complex, summarized as mitochondrial membrane permeability transition pore (MPTP), which is considered to regulate the mitochondrial membrane potential (ΔΨm). In addition, the TSPO is associated with several other proteins. The associations of the TSPO with these various proteins at the mitochondrial membranes have been attributed to functions such as apoptosis, steroidogenesis, phosphorylation, reactive oxygen species (ROS) generation, ATP production, and collapse of the ΔΨm. Interestingly, while TSPO is known to play a role in the modulation of steroid production, in turn, steroids are also known to affect TSPO expression. As with the putative endogenous TSPO ligands, the effects of steroids on TSPO functions still have to be established. In any case, steroid-TSPO interactions occur in organs and tissues as diverse as the reproductive system, kidney, and brain. In general, the steroid-TSPO interactions are thought to be part of stress responses, but may also be essential for reproductive events, embryonic development, and responses to injury, including brain injury. The present review focuses on the role of TSPO in cell death i.e. the notion that enhanced expression and/or activation of the TSPO leads to cell death, and the potential of steroids to regulate TSPO expression and activation.  相似文献   

13.
Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO), are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER)-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864) and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.  相似文献   

14.
In recent years we have witnessed a major interest in the study of the role of mitochondria, not only as ATP producers through oxidative phosphorylation but also as regulators of intracellular Ca2+ homeostasis and endogenous producers of reactive oxygen species (ROS). Interestingly, the mitochondria have been also implicated as central executioners of cell death. Increased mitochondrial Ca2+ overload as a result of excitotoxicity has been associated with the generation of superoxide and may induce the release of proapoptotic mitochondrial proteins, proceeding through DNA fragmentation/condensation and culminating in cell demise by apoptosis and/or necrosis. In addition, these processes have been implicated in the pathogenesis of many neurodegenerative diseases, which share several features of cell death: selective brain areas undergo neurodegeneration, involving mitochondrial dysfunction (mitochondrial complexes are affected), loss of intracellular Ca2+ homeostasis, excitotoxicity, and the extracellular or intracellular accumulation of insoluble protein aggregates in the brain.  相似文献   

15.
The functioning of the mitochondrial permeability transition pore (mPTP) is involved in the mechanism of programmed cell death and mitochondrial dysfunction observed with aging. In this work, the functional state of heart mitochondria isolated from young (mature and 2–3-month-old) and old (20–22-month-old) rats under conditions of mPTP opening was studied. In the mitochondria of old rats, the rates of Ca2+ and TPP+ absorption decreased by 40 and 42%, respectively, the threshold concentration of Ca2+ decreased by 20%, and the swelling rate of mitochondria from old animals was by 40% higher than that of mitochondria from young ones. In the heart mitochondria of old animals, the content and production of reactive oxygen species (ROS) varied, the superoxide anion content was increased, and the level of hydroperoxide (H2O2) increased at a threshold calcium concentration. Electron microscopy revealed a decrease in the number of cristae in mitochondria of the rat heart during aging. To study the potential role of proteins modulating the mPTP functioning, the content of 2',3'-cyclonucleotide-3'-phosphodiesterase (CNPase) and translocator protein (TSPO) in the heart mitochondria of rats of different ages was measured. A significant age-related decrease in the level of CNPase and an increase in the amount of TSPO were detected. The role of these proteins in mitochondrial dysfunction observed during aging is discussed.  相似文献   

16.

Background

Mitochondria, essential to the cell homeostasis maintenance, are central to the intrinsic apoptotic pathway and their dysfunction is associated with multiple diseases. Recent research documents that microRNAs (miRNAs) regulate important signalling pathways in mitochondria, and many of these miRNAs are deregulated in various diseases including cancers.

Scope of review

In this review, we summarise the role of miRNAs in the regulation of the mitochondrial bioenergetics/function, and discuss the role of miRNAs modulating the various metabolic pathways resulting in tumour suppression and their possible therapeutic applications.

Major conclusions

MiRNAs have recently emerged as key regulators of metabolism and can affect mitochondria by modulating mitochondrial proteins coded by nuclear genes. They were also found in mitochondria. Reprogramming of the energy metabolism has been postulated as a major feature of cancer. Modulation of miRNAs levels may provide a new therapeutic approach for the treatment of mitochondria-related pathologies, including neoplastic diseases.

General significance

The elucidation of the role of miRNAs in the regulation of mitochondrial activity/bioenergetics will deepen our understanding of the molecular aspects of various aspects of cell biology associated with the genesis and progression of neoplastic diseases. Eventually, this knowledge may promote the development of innovative pharmacological interventions. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

17.
Translocator protein of 18 kDa (TSPO) is a highly conserved, ubiquitous protein localized in the outer mitochondrial membrane, where it is thought to play a key role in the mitochondrial transport of cholesterol, a key step in the generation of steroid hormones. However, it was first characterized as the peripheral benzodiazepine receptor because it appears to be responsible for high affinity binding of a number of benzodiazepines to non-neuronal tissues. Ensuing studies have employed natural and synthetic ligands to assess the role of TSPO function in a number of natural and pathological circumstances. Largely through the use of these compounds and biochemical associations, TSPO has been proposed to play a role in the mitochondrial permeability transition pore (PTP), which has been associated with cell death in many human pathological conditions. Here, we critically assess the role of TSPO in the function of the PTP through the generation of mice in which the Tspo gene has been conditionally eliminated. Our results show that 1) TSPO plays no role in the regulation or structure of the PTP, 2) endogenous and synthetic ligands of TSPO do not regulate PTP activity through TSPO, 3) outer mitochondrial membrane regulation of PTP activity occurs though a mechanism that does not require TSPO, and 4) hearts lacking TSPO are as sensitive to ischemia-reperfusion injury as hearts from control mice. These results call into question a wide variety of studies implicating TSPO in a number of pathological processes through its actions on the PTP.  相似文献   

18.
Chronic inflammation of the gastrointestinal tract increasing the risk of cancer has been described to be linked to the high expression of the mitochondrial translocator protein (18 kDa; TSPO). Accordingly, TSPO drug ligands have been shown to regulate cytokine production and to improve tissue reconstruction. We used HT-29 human colon carcinoma cells to evaluate the role of TSPO and its drug ligands in tumor necrosis factor (TNF)-induced inflammation. TNF-induced interleukin (IL)-8 expression, coupled to reactive oxygen species (ROS) production, was followed by TSPO overexpression. TNF also destabilized mitochondrial ultrastructure, inducing cell death by apoptosis. Treatment with the TSPO drug ligand PK 11195 maintained the mitochondrial ultrastructure, reducing IL-8 and ROS production and cell death. TSPO silencing and overexpression studies demonstrated that the presence of TSPO is essential to control IL-8 and ROS production, so as to maintain mitochondrial ultrastructure and to prevent cell death. Taken together, our data indicate that inflammation results in the disruption of mitochondrial complexes containing TSPO, leading to cell death and epithelia disruption. Significance: This work implicates TSPO in the maintenance of mitochondrial membrane integrity and in the control of mitochondrial ROS production, ultimately favoring tissue regeneration.  相似文献   

19.
《Autophagy》2013,9(1):4-9
Cellular degradative processes including proteasomal and vacuolar / lysosomal (autophagic) degradation, as well as the activity of proteases (both cytosolic and mitochondrial), provide for a continuous turnover of damaged and obsolete macromolecules and organelles. Mitochondria are organelles essential for respiration and oxidative energy production in aerobic cells; they are also required for multiple biosynthetic pathways. As such, mitochondrial homeostasis is very important for cell survival. We review the evidence regarding the possible mechanisms for mitochondrial degradation. Increasingly, the evidence suggests autophagy plays a central role in the degradation of mitochondria. How mitochondria might be specifically selected for autophagy (mitophagy) remains an open question, although some evidence suggests that, under certain circumstances, in mammalian cells the Mitochondrial Permeability Transition (MPT) plays a role in initiation of the process. As more is learned about the functioning of autophagy as a degradation process, the greater the appreciation we are developing concerning its role in the control of mitochondrial degradation.  相似文献   

20.
Cellular degradative processes including proteasomal and vacuolar/lysosomal (autophagic) degradation, as well as the activity of proteases (both cytosolic and mitochondrial), provide for a continuous turnover of damaged and obsolete macromolecules and organelles. Mitochondria are organelles essential for respiration and oxidative energy production in aerobic cells; they are also required for multiple biosynthetic pathways. As such, mitochondrial homeostasis is very important for cell survival. We review the evidence regarding the possible mechanisms for mitochondrial degradation. Increasingly, the evidence suggests autophagy plays a central role in the degradation of mitochondria. How mitochondria might be specifically selected for autophagy (mitophagy) remains an open question, although some evidence suggests that, under certain circumstances, in mammalian cells the Mitochondrial Permeability Transition (MPT) plays a role in initiation of the process. As more is learned about the functioning of autophagy as a degradation process, the greater the appreciation we are developing concerning its role in the control of mitochondrial degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号