首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene flow between coexisting or nearby populations normally prevents genetic divergence and local adaptation. Despite this, there are an increasing number of reports of sympatric sister taxa, indicating potential divergence and speciation in the face of gene flow. A large number of such reported cases involve lake-dwelling fish, which are expected to run into few physical barriers to dispersal within their aquatic habitat. However, such cases may not necessarily reflect sympatric speciation if cryptic dispersal barriers are common in lakes and other aquatic systems. In this study, we examined genetic differentiation in perch (Perca fluviatilis L.) from nine locations in a single, small lake (24 km(2)), using microsatellites. We detected significant genetic differentiation in all but two pairwise comparisons. These patterns were not consistent with divergence by distance or the existence of kin groups. Instead, they suggest that cryptic barriers to dispersal exist within the lake, allowing small-scale genetic divergence. Such an observation suggests that allopatric (or parapatric) divergence may be possible, even in small, apparently homogenous environments such as lakes. This has important consequences for how we currently view evidence from nature for sympatric speciation.  相似文献   

2.
The genomic architecture underlying ecological divergence and ecological speciation with gene flow is still largely unknown for most organisms. One central question is whether divergence is genome‐wide or localized in ‘genomic mosaics’ during early stages when gene flow is still pronounced. Empirical work has so far been limited, and the relative impacts of gene flow and natural selection on genomic patterns have not been fully explored. Here, we use ecotypes of Atlantic cod to investigate genomic patterns of diversity and population differentiation in a natural system characterized by high gene flow and large effective population sizes, properties which theoretically could restrict divergence in local genomic regions. We identify a genomic region of strong population differentiation, extending over approximately 20 cM, between pairs of migratory and stationary ecotypes examined at two different localities. Furthermore, the region is characterized by markedly reduced levels of genetic diversity in migratory ecotype samples. The results highlight the genomic region, or ‘genomic island’, as potentially associated with ecological divergence and suggest the involvement of a selective sweep. Finally, we also confirm earlier findings of localized genomic differentiation in three other linkage groups associated with divergence among eastern Atlantic populations. Thus, although the underlying mechanisms are still unknown, the results suggest that ‘genomic mosaics’ of differentiation may even be found under high levels of gene flow and that marine fishes may provide insightful model systems for studying and identifying initial targets of selection during ecological divergence.  相似文献   

3.
Diverse geographical modes and mechanisms of speciation are known, and individual speciation genes have now been identified. Despite this progress, genome-wide outcomes of different evolutionary processes during speciation are less understood. Here, we integrate ecological and spatial information, mating trials, transplantation data and analysis of 86 130 single nucleotide polymorphisms (SNPs) in eight populations (28 pairwise comparisons) of Timema cristinae stick insects to test the effects of different factors on genomic divergence in a system undergoing ecological speciation. We find patterns consistent with effects of numerous factors, including geographical distance, gene flow, divergence in host plant use and climate, and selection against maladaptive hybridization (i.e. reinforcement). For example, the number of highly differentiated ‘outlier loci’, allele-frequency clines and the overall distribution of genomic differentiation were recognizably affected by these factors. Although host use has strong effects on phenotypic divergence and reproductive isolation, its effects on genomic divergence were subtler and other factors had pronounced effects. The results demonstrate how genomic data can provide new insights into speciation and how genomic divergence can be complex, yet predictable. Future work could adopt experimental, mapping and functional approaches to directly test which genetic regions are affected by selection and determine their physical location in the genome.  相似文献   

4.
The patterns of genomic divergence during ecological speciation are shaped by a combination of evolutionary forces. Processes such as genetic drift, local reduction of gene flow around genes causing reproductive isolation, hitchhiking around selected variants, variation in recombination and mutation rates are all factors that can contribute to the heterogeneity of genomic divergence. On the basis of 60 fully sequenced three-spined stickleback genomes, we explore these different mechanisms explaining the heterogeneity of genomic divergence across five parapatric lake and river population pairs varying in their degree of genetic differentiation. We find that divergent regions of the genome are mostly specific for each population pair, while their size and abundance are not correlated with the extent of genome-wide population differentiation. In each pair-wise comparison, an analysis of allele frequency spectra reveals that 25–55% of the divergent regions are consistent with a local restriction of gene flow. Another large proportion of divergent regions (38–75%) appears to be mainly shaped by hitchhiking effects around positively selected variants. We provide empirical evidence that alternative mechanisms determining the evolution of genomic patterns of divergence are not mutually exclusive, but rather act in concert to shape the genome during population differentiation, a first necessary step towards ecological speciation.  相似文献   

5.
Mechanisms of reproductive isolation during plant speciation are often unclear because distinct species often experience high levels of gene flow and hybridization. Adaptive radiations such as the Hawaiian silversword alliance (HSA) provide unique opportunities to study the interactions of selection, gene flow and isolating mechanisms during the speciation process. We examined patterns of phenotypic and genetic differentiation in Dubautia arborea and Dubautia ciliolata, two parapatric HSA taxa that show marked morphological divergence but evidence of weak molecular differentiation, in order to estimate genome-wide differentiation and gene flow patterns. We scored 166 amplified fragment length polymorphism markers in a set of 89 plants from two populations each of D. arborea and D. ciliolata and phenotypically D. arborea-like and D. ciliolata-like plants from a natural hybrid zone. Analyses of population subdivision showed low levels of differentiation between the two species (F(ST) = 0.089) and evidence that the phenotypically parental hybrid zone plants were largely of parental species rather than of hybrid origin. A Bayesian analysis of population ancestry identified a number of plants with admixed D. arborea and D. ciliolata ancestry, even in nonhybrid-zone populations. These results suggest that genome-wide low levels of differentiation between D. arborea and D. ciliolata are in part due to gene flow, and favour models of genic speciation and collective evolution in which gene flow has different effects on selected loci vs. nonselected genomic regions. We discuss ecological and climatic factors that may have shaped patterns of differentiation in this species complex.  相似文献   

6.
Adaptation can occur with or without genome‐wide differentiation. If adaptive loci are linked to traits involved in reproductive isolation, genome‐wide divergence is likely, and speciation is possible. However, adaptation can also lead to phenotypic differentiation without genome‐wide divergence if levels of ongoing gene flow are high. Here, we use the replicated occurrence of melanism in lava flow lizards to assess the relationship between local adaptation and genome‐wide differentiation. We compare patterns of phenotypic and genomic divergence among lava flow and nonlava populations for three lizard species and three lava flows in the Chihuahuan Desert. We find that local phenotypic adaptation (melanism) is not typically accompanied by genome‐wide differentiation. Specifically, lava populations do not generally exhibit greater divergence from nonlava populations than expected by geography alone, regardless of whether the lava formation is 5,000 or 760,000 years old. We also infer that gene flow between lava and nonlava populations is ongoing in all lava populations surveyed. Recent work in the isolation by environment and ecological speciation literature suggests that environmentally driven genome‐wide differentiation is common in nature. However, local adaptation may often simply be local adaptation rather than an early stage of ecological speciation.  相似文献   

7.
Divergence with gene flow is well documented and reveals the influence of ecological adaptation on speciation. Yet, it remains intuitive that gene exchange inhibits speciation in many scenarios, particularly among ecologically similar populations. The influence of gene flow on the divergence of populations facing similar selection pressures has received less empirical attention than scenarios where differentiation is coupled with local environmental adaptation. I used a paired study design to test the influence of genomic divergence and introgression on plumage differentiation between ecologically similar allopatric replacements of Andean cloud forest birds. Through analyses of short‐read genome‐wide sequences from over 160 individuals in 16 codistributed lineages, I found that plumage divergence is associated with deep genetic divergence, implicating a prominent role of geographic isolation in speciation. By contrast, lineages that lack plumage divergence across the same geographic barrier are more recently isolated or exhibit a signature of secondary genetic introgression, indicating a negative relationship between gene flow and divergence in phenotypic traits important to speciation. My results suggest that the evolutionary outcomes of cycles of isolation and divergence in this important theatre of biotic diversification are sensitive to time spent in the absence of gene flow.  相似文献   

8.
Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.  相似文献   

9.
During speciation‐with‐gene‐flow, effective migration varies across the genome as a function of several factors, including proximity of selected loci, recombination rate, strength of selection, and number of selected loci. Genome scans may provide better empirical understanding of the genome‐wide patterns of genetic differentiation, especially if the variance due to the previously mentioned factors is partitioned. In North American lake whitefish (Coregonus clupeaformis), glacial lineages that diverged in allopatry about 60,000 years ago and came into contact 12,000 years ago have independently evolved in several lakes into two sympatric species pairs (a normal benthic and a dwarf limnetic). Variable degrees of reproductive isolation between species pairs across lakes offer a continuum of genetic and phenotypic divergence associated with adaptation to distinct ecological niches. To disentangle the complex array of genetically based barriers that locally reduce the effective migration rate between whitefish species pairs, we compared genome‐wide patterns of divergence across five lakes distributed along this divergence continuum. Using restriction site associated DNA (RAD) sequencing, we combined genetic mapping and population genetics approaches to identify genomic regions resistant to introgression and derive empirical measures of the barrier strength as a function of recombination distance. We found that the size of the genomic islands of differentiation was influenced by the joint effects of linkage disequilibrium maintained by selection on many loci, the strength of ecological niche divergence, as well as demographic characteristics unique to each lake. Partial parallelism in divergent genomic regions likely reflected the combined effects of polygenic adaptation from standing variation and independent changes in the genetic architecture of postzygotic isolation. This study illustrates how integrating genetic mapping and population genomics of multiple sympatric species pairs provide a window on the speciation‐with‐gene‐flow mechanism.  相似文献   

10.
Understanding the origin of new species is a central goal in evolutionary biology. Diverging lineages often evolve highly heterogeneous patterns of genetic differentiation; however, the underlying mechanisms are not well understood. We investigated evolutionary processes governing genetic differentiation between the hybridizing campions Silene dioica (L.) Clairv. and S. latifolia Poiret. Demographic modelling indicated that the two species diverged with gene flow. The best‐supported scenario with heterogeneity in both migration rate and effective population size suggested that a small proportion of the loci evolved without gene flow. Differentiation (F ST) and sequence divergence (d XY) were correlated and both tended to peak in the middle of most linkage groups, consistent with reduced gene flow at highly differentiated loci. Highly differentiated loci further exhibited signatures of selection. In between‐species population pairs, isolation by distance was stronger for genomic regions with low between‐species differentiation than for highly differentiated regions that may contain barrier loci. Moreover, differentiation landscapes within and between species were only weakly correlated, suggesting that linked selection due to shared recombination and gene density landscapes is not the dominant determinant of genetic differentiation in these lineages. Instead, our results suggest that divergent selection shaped the genomic landscape of differentiation between the two Silene species, consistent with predictions for speciation in the face of gene flow.  相似文献   

11.
12.
Ecological divergence in a species provides a valuable opportunity to study the early stages of speciation. We focused on Metrosideros polymorpha, a unique example of the incipient radiation of woody species, to examine how an ecological divergence continues in the face of gene flow. We analyzed the whole genomes of 70 plants collected throughout the island of Hawaii, which is the youngest island with the highest altitude in the archipelago and encompasses a wide range of environments. The continuous M. polymorpha forest stands on the island of Hawaii were differentiated into three genetic clusters, each of which grows in a distinctive environment and includes substantial genetic and phenotypic diversity. The three genetic clusters showed signatures of selection in genomic regions encompassing genes relevant to environmental adaptations, including genes associated with light utilization, oxidative stress, and leaf senescence, which are likely associated with the ecological differentiation of the species. Our demographic modeling suggested that the glaberrima cluster in wet environments maintained a relatively large population size and two clusters split: polymorpha in the subalpine zone and incana in dry and hot conditions. This ecological divergence possibly began before the species colonized the island of Hawaii. Interestingly, the three clusters recovered genetic connectivity coincidentally with a recent population bottleneck, in line with the weak reproductive isolation observed in the species. This study highlights that the degree of genetic differentiation between ecologically-diverged populations can vary depending on the strength of natural selection in the very early phases of speciation.  相似文献   

13.
There has been much debate over the origin of species diversity in biodiversity hotspots, particularly the rate of speciation over extinction and the geographic mode of speciation. Here, we looked at speciation with varying degrees of sympatry in a biodiversity hotspot, focusing on a distinct morphological clade in the Cape Floristic Region in southern Africa, the Gladiolus carinatus species complex (Iridaceae). We investigate the mechanisms involved in population and species differentiation through a combination of ecological and genomic approaches. We estimated spatial and phenological overlap, differences in floral morphology, genetic isolation and genomic selection. A genetic coalescent analysis estimated that the time of divergence between lineages followed the establishment of available habitat in the Cape littoral plain where these species currently overlap geographically. Marked shifts in flowering time and morphology, which act as barriers to gene flow, have developed to varying degrees over the last 0.3–1.4 million years. An amplified fragment length polymorphism genome scan revealed signatures of divergent and balancing selection, although half of the loci consistently behaved neutrally. Divergent species outliers (1%) and floral morph outliers (3%) represent a small proportion of the genome, but these loci produced clear genetic clusters of species and significant associations with floral traits. These results indicate that the G. carinatus complex represents a continuum of recent speciation. We provide further evidence for ecological adaptation in the face of gene flow.  相似文献   

14.
The relative roles of gene flow and natural selection in maintaining species differentiation have been a subject of debate for some time. The traditional view is that gene flow constrains adaptive divergence and maintains species cohesiveness. Alternatively, ecological speciation posits that the reverse is true: that adaptive ecological differentiation constrains gene flow. In this study, we examine gene flow and population differentiation among populations of two species of the Hawaiian silversword alliance, Dubautia arborea and D. ciliolata. We compare divergence in putatively neutral microsatellite markers with divergence in leaf morphometric traits, which may be selectively important or physiologically linked to selectively important traits. Gene flow between populations was found to be significant in only one of the two species, D. arborea. Leaf morphometric differentiation between species was significant, though not among populations within species. No evidence of effective genetic introgression was observed between apparently 'pure' populations of these species. Gene flow as measured by microsatellites was not correlated with geographic distance between populations, but was correlated with the linear placement of the widest part of the leaf. Because these two species are interfertile, as demonstrated by the presence of active hybrid zone, the lack of genetic introgression and the maintenance of species boundaries may be associated with natural selection on differential habitat.  相似文献   

15.
Mayr's best recognized scientific contributions include the biological species concept and the theory of geographic speciation. In the latter, reproductive isolation evolves as an incidental by‐product of genetic divergence between allopatric populations. Mayr noted that divergent natural selection could accelerate speciation, but also argued that gene flow so strongly retards divergence that, even with selection, non‐allopatric speciation is unlikely. However, current theory and data demonstrate that substantial divergence, and even speciation, in the face of gene flow is possible. Here, I attempt to connect some opposing views about speciation by integrating Mayr's ideas about the roles of ecology and geography in speciation with current data and theory. My central premise is that the speciation process (i.e. divergence) is often continuous, and that the opposing processes of selection and gene flow interact to determine the degree of divergence (i.e. the degree of progress towards the completion of speciation). I first establish that, in the absence of gene flow, divergent selection often promotes speciation. I then discuss how population differentiation in the face of gene flow is common when divergent selection occurs. However, such population differentiation does not always lead to the evolution of discontinuities, strong reproductive isolation, and thus speciation per se. I therefore explore the genetic and ecological circumstances that facilitate speciation in the face of gene flow. For example, particular genetic architectures or ecological niches may tip the balance between selection and gene flow strongly in favour of selection. The circumstances allowing selection to overcome gene flow to the extent that a discontinuity develops, and how often these circumstances occur, are major remaining questions in speciation research. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 26–46.  相似文献   

16.
Genes under divergent selection flow less readily between populations than other loci. This observation has led to verbal “divergence hitchhiking” models of speciation in which decreased interpopulation gene flow surrounding loci under divergent selection can generate large regions of differentiation within the genome (genomic islands). The efficacy of this model in promoting speciation depends on the size of the region affected by divergence hitchhiking. Empirical evidence is mixed, with examples of both large and small genomic islands. To address these empirical discrepancies and to formalize the theory, we present mathematical models of divergence hitchhiking, which examine neutral differentiation around selected sites. For a single locus under selection, regions of differentiation do not extend far along a chromosome away from a selected site unless both effective population sizes and migration rates are low. When multiple loci are considered, regions of differentiation can be larger. However, with many loci under selection, genome‐wide divergence occurs and genomic islands are erased. The results show that divergence hitchhiking can generate large regions of differentiation, but that the conditions under which this occurs are limited. Thus, speciation may often require multifarious selection acting on many, isolated and physically unlinked genes. How hitchhiking promotes further adaptive divergence warrants consideration.  相似文献   

17.
Determining how genetic diversity is structured between populations that span the divergence continuum from populations to biological species is key to understanding the generation and maintenance of biodiversity. We investigated genetic divergence and gene flow in eight lineages of birds with a trans‐Beringian distribution, where Asian and North American populations have likely been split and reunited through multiple Pleistocene glacial cycles. Our study transects the speciation process, including eight pairwise comparisons in three orders (ducks, shorebirds and passerines) at population, subspecies and species levels. Using ultraconserved elements (UCEs), we found that these lineages represent conditions from slightly differentiated populations to full biological species. Although allopatric speciation is considered the predominant mode of divergence in birds, all of our best divergence models included gene flow, supporting speciation with gene flow as the predominant mode in Beringia. In our eight lineages, three were best described by a split‐migration model (divergence with gene flow), three best fit a secondary contact scenario (isolation followed by gene flow), and two showed support for both models. The lineages were not evenly distributed across a divergence space defined by gene flow (M) and differentiation (FST), instead forming two discontinuous groups: one with relatively shallow divergence, no fixed single nucleotide polymorphisms (SNPs), and high rates of gene flow between populations; and the second with relatively deeply divergent lineages, multiple fixed SNPs, and low gene flow. Our results highlight the important role that gene flow plays in avian divergence in Beringia.  相似文献   

18.
Ecological divergence in the face of gene flow has recently become implicated as a potentially important cause of speciation and adaptive radiation. Here, we develop a genomic approach to test for divergent selection in sympatric host races of the larch budmoth Zeiraphera diniana (Lepidoptera: Tortricidae). We analysed hundreds of amplified fragment length polymorphism markers in 92 individuals in sympatric and allopatric populations, and in two backcross broods used to map the markers to individual chromosomes. The results directly confirm the existence of natural hybridization and demonstrate strong heterogeneity between chromosomes in terms of molecular divergence between host races (the average level of divergence was FST = 0.216). However, genomic heterogeneity was not found when we analysed divergence between geographically separated populations of the same host race. We conclude that the variance of the level of sympatric divergence among chromosomes is the footprint of divergent selection acting on a few linkage groups, combined with appreciable gene flow that homogenizes between-race variation at the remaining linkage groups. These results, coupled with other recent multilocus analyses of sister species pairs, demonstrate that selection-driven sympatric phase of genetic divergence in the presence of gene flow is a likely feature of speciation.  相似文献   

19.
Parallel phenotypic differentiation is generally attributed to parallel adaptive divergence as an evolutionary response to similar environmental contrasts. Such parallelism may actually originate from several evolutionary scenarios ranging from repeated parallel divergence caused by divergent selection to a unique divergence event followed by gene flow. Reconstructing the evolutionary history underlying parallel phenotypic differentiation is thus fundamental to understand the relative contribution of demography and selection on genomic divergence during speciation. In this study, we investigate the divergence history of replicate European whitefish (Coregonus lavaretus), limnetic and benthic species pairs from two lakes in Norway and two lakes in Switzerland. Demographic models accounting for semi‐permeability and linked selection were fitted to the unfolded joint allele frequency spectrum built from genome‐wide SNPs and compared to each other in each species pair. We found strong support for a model of asymmetrical post‐glacial secondary contact between glacial lineages in all four lakes. Moreover, our results suggest that heterogeneous genomic differentiation has been shaped by the joint action of linked selection accelerating lineage sorting during allopatry, and heterogeneous migration eroding divergence at different rates along the genome following secondary contact. Our analyses reveal how the interplay between demography, selection and historical contingency has influenced the levels of diversity observed in previous whitefish phylogeographic studies. This study thus provides new insights into the historical demographic and selective processes that shaped the divergence associated with ecological speciation in European whitefish.  相似文献   

20.
The metaphor of ‘genomic islands of speciation’ was first used to describe heterogeneous differentiation among loci between the genomes of closely related species. The biological model proposed to explain these differences was that the regions showing high levels of differentiation were resistant to gene flow between species, while the remainder of the genome was being homogenized by gene flow and consequently showed lower levels of differentiation. However, the conditions under which such differentiation can occur at multiple unlinked loci are restrictive; additionally, essentially, all previous analyses have been carried out using relative measures of divergence, which can be misleading when regions with different levels of recombination are compared. Here, we test the model of differential gene flow by asking whether absolute divergence is also higher in the previously identified ‘islands’. Using five species pairs for which full sequence data are available, we find that absolute measures of divergence are not higher in genomic islands. Instead, in all cases examined, we find reduced diversity in these regions, a consequence of which is that relative measures of divergence are abnormally high. These data therefore do not support a model of differential gene flow among loci, although islands of relative divergence may represent loci involved in local adaptation. Simulations using the program IMa2 further suggest that inferences of any gene flow may be incorrect in many comparisons. We instead present an alternative explanation for heterogeneous patterns of differentiation, one in which postspeciation selection generates patterns consistent with multiple aspects of the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号