首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin D is a commonly used bone modulator in regenerative medicine. Several modalities have been explored for the delivery of vitamin D including nanoparticles and scaffold. The present study aimed to assess the potential use of a bio-degradable chitosan scaffold for the delivery of vitamin D. The objectives included fabrication of a bio-degradable chitosan scaffold, integration of vitamin D into the scaffold, characterization of the vitamin D integrated scaffold. Characterization was carried out using, X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The structure of the scaffold was assessed by scanning electron microscopy. The scaffold was placed in phosphate buffer saline and the release duration of vitamin D was observed using UV spectrophotometry. Dental pulp mesenchymal stem cells were added to the scaffold to study the scaffold associated toxicity and the functionality of the scaffold released vitamin D. The vitamin D release period from the scaffold was estimated to be for 80 hrs. MTT assay of the stem cells was comparable to that of the control group (stem cells cultured in media) inferring that the scaffold is not toxic towards the stem cells. The positive alizarin red S staining, a higher expression of alkaline phosphatase, osteocalcin, and RunX2 confirmed the functional capability (osteogenic differentiation of the stem cells) of the released vitamin D. Based on the data from the present study, it can be inferred that chitosan scaffold can be used for the sustained delivery of functional vitamin D for 3–5 days.  相似文献   

2.
Proteins with multiple binding sites play important roles in cell signaling systems by nucleating protein complexes in which, for example, enzymes and substrates are co-localized. Proteins that specialize in this function are called by a variety names, including adapter, linker and scaffold. Scaffold-mediated nucleation of protein complexes can be either constitutive or induced. Induced nucleation is commonly mediated by a docking site on a scaffold that is activated by phosphorylation. Here, by considering minimalist mathematical models, which recapitulate scaffold effects seen in more mechanistically detailed models, we obtain analytical and numerical results that provide insights into scaffold function. These results elucidate how recruitment of a pair of ligands to a scaffold depends on the concentrations of the ligands, on the binding constants for ligand-scaffold interactions, on binding cooperativity, and on the milieu of the scaffold, as ligand recruitment is affected by competitive ligands and decoy receptors. For the case of a bivalent scaffold, we obtain an expression for the unique scaffold concentration that maximally recruits a pair of monovalent ligands. Through simulations, we demonstrate that a bivalent scaffold can nucleate distinct sets of ligands to equivalent extents when the scaffold is present at different concentrations. Thus, the function of a scaffold can potentially change qualitatively with a change in copy number. We also demonstrate how a scaffold can change the catalytic efficiency of an enzyme and the sensitivity of the rate of reaction to substrate concentration. The results presented here should be useful for understanding scaffold function and for engineering scaffolds to have desired properties.  相似文献   

3.
Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process.  相似文献   

4.
Analysis of DNA attached to the chromosome scaffold   总被引:2,自引:0,他引:2       下载免费PDF全文
Two different methods have been described to investigate whether any specific DNA sequences are intimately associated with the metaphase chromosome scaffold. The chromosome scaffold, prepared by dehistonization of chromosomes with 2 M NaCl, is a nonhistone protein complex to which many looped DNA molecules are attached (Laemmli et al., 1977, Cold Spring Harbor Symp. Quant. Biol. 42:351--360). Chromosome scaffold DNA was prepared from dehistonized chicken MSB chromosomes by restriction endonuclease EcoRI digestion followed by removal of the looped DNA by sucrose gradient sedimentation. Alternatively, the scaffold DNA was prepared from micrococcal nuclease-digested intact chromosomes using sucrose gradients containing 2M NaCl. Solution hybridization of the radioactively labeled scaffold DNA with a large excess of total nuclear DNA revealed that, in either case, the scaffold DNA is not a unique sequence class of genomic DNA. Southern-blotting hybridization also showed that the scaffold DNA prepared from EcoRI-digested dehistonized chromosomes was not enriched (or depleted) in the ovalbumin gene sequences. The possibility of a dynamic interaction of protein and DNA in the chromosome scaffold and the possibility that the scaffold is a preparative artifact are discussed.  相似文献   

5.
Peptide aptamers are peptides constrained and presented by a scaffold protein that are used to study protein function in cells. They are able to disrupt protein-protein interactions and to constitute recognition modules that allow the creation of a molecular toolkit for the intracellular analysis of protein function. The success of peptide aptamer technology is critically dependent on the performance of the scaffold. Here, we describe a rational approach to the design of a new peptide aptamer scaffold. We outline the qualities that an ideal scaffold would need to possess to be broadly useful for in vitro and in vivo studies and apply these criteria to the design of a new scaffold, called STM. Starting from the small, stable intracellular protease inhibitor stefin A, we have engineered a biologically neutral scaffold that retains the stable conformation of the parent protein. We show that STM is able to present peptides that bind to targets of interest, both in the context of known interactors and in library screens. Molecular tools based on our scaffold are likely to be used in a wide range of studies of biological pathways, and in the validation of drug targets.  相似文献   

6.
In this study, we evaluated the behavior of neural stem cells (NSCs) using a new peptide hydrogel scaffold named IKVAVmx, which was made by mixing self-assembling peptide RADA16 and designer peptide RADA16-IKVAV solutions. NSCs derived from rat cerebral cortex were culture-expanded in neuorobasal medium and seeded on the RADA16 and IKVAVmx hydrogels. Cells could penetrate the hydrogels and form a 3D cellular network. Compared to pure RADA16 scaffold, we found that IKVAVmx scaffold significantly promoted cell proliferation and stimulated cell migration into the 3D scaffold. Moreover, Immunocytochemistry and Western blot analysis indicated that the differentiation ratio of neurons from NSCs in IKVAVmx scaffold was higher than that in pure RADA16 scaffold. These results suggested that this new hydrogel scaffold provided an ideal substrate for NSCs 3D culture and suggested its further application for neural tissue engineering.  相似文献   

7.
Zhu Y  Dong Z  Wejinya UC  Jin S  Ye K 《Journal of biomechanics》2011,44(13):2356-2361
While the determination of mechanical properties of a hard scaffold is relatively straightforward, the mechanical testing of a soft tissue scaffold poses significant challenges due in part to its fragility. Here, we report a new approach for characterizing the stiffness and elastic modulus of a soft scaffold through atomic force microscopy (AFM) nanoindentation. Using collagen-chitosan hydrogel scaffolds as model soft tissue scaffolds, we demonstrated the feasibility of using AFM nanoindentation to determine a force curve of a soft tissue scaffold. A mathematical model was developed to ascertain the stiffness and elastic modulus of a scaffold from its force curve obtained under different conditions. The elastic modulus of a collagen-chitosan (80%/20%, v/v) scaffold is found to be 3.69 kPa. The scaffold becomes stiffer if it contains more chitosan. The elastic modulus of a scaffold composed of 70% collagen and 30% chitosan is about 11.6 kPa. Furthermore, the stiffness of the scaffold is found to be altered significantly by extracellular matrix deposited from cells that are grown inside the scaffold. The elastic modulus of collagen-chitosan scaffolds increased from 10.5 kPa on day 3 to 63.4 kPa on day 10 when human foreskin fibroblast cells grew inside the scaffolds. Data acquired from these measurements will offer new insights into understanding cell fate regulation induced by physiochemical cues of tissue scaffolds.  相似文献   

8.
Target validation using protein aptamers enables the characterization of a specific function of a target protein in an environment that resembles native conditions as closely as possible. A major obstacle to the use of this technology has been the generation of bioactive aptamers, which is dependent on the choice of scaffold. Constraining binding peptides within a particular scaffold does not necessarily result in binding aptamers, as suboptimal presentation of peptides can occur. It is therefore understandable that different peptides might require different scaffolds for optimal presentation. In this article, we describe a novel scaffold protein that bypasses the conventional requirement for scaffolds to have known rigid structures and yet successfully presents several peptides that need to adopt a wide range of conformations for binding to their target protein. Using an unstructured protein, 4EBP1, as scaffold, we successfully construct binding aptamers to three different target proteins: Mdm2, proliferating cell nuclear antigen, and cyclin A. The Mdm2-binding aptamer constructed using 4EBP1 as scaffold demonstrates better stability and bioactivity compared to that constructed using thioredoxin as scaffold. This new scaffold protein, which makes it relatively easy to create bioactive aptamers based on known interaction sequences, will greatly facilitate the aptamer approach to target validation.  相似文献   

9.
PHB/PLLA组织工程前交叉韧带支架材料改性的实验研究   总被引:2,自引:0,他引:2  
目的:探索体外构建组织工程前交叉韧带(anterior cruciate ligament,ACL)的三维支架材料。方法:以聚羟基丁酸已酯/聚左旋乳酸(PHB/PLLA1:1)制备"三明治"样结构共聚物并测量其孔隙率等指标。以I型胶原对制备的PHB/PLLA支架进行杂化,获得PHB/PLLA胶原杂化支架。扫描电镜观察其表面结构。将兔皮肤成纤维细胞(SF)接种于PHB/PLLA支架与PHB/PLLA胶原杂化支架,观察其在材料上生长情况。结果:PHB/PLLA支架杂化后胶原填充于纤维空隙,分布比较均匀。体外培养的胶原杂化支架材料上要比PHB/PLLA支架有更多的皮肤成纤维细胞生长。结论:胶原杂化有利于细胞种植和生长,PHB/PLLA胶原杂化支架具有良好的三维构型和生物相容性,有望为前交叉韧带损伤的修复提供了一种新型的支架材料。  相似文献   

10.
A method of nuclear matrix and chromosomal scaffold preparation from cultured animal cells was developed. After the high-salt extraction, interphase and mitotic cells were not detached from the coverslips that enabled us to analyse the nuclear matrix and chromosomal scaffold in cells at all mitotic phases. Morphological methods (phase contrast microscopy and electron microscopy of ultrathin sections) did not reveal any structures that could be identified as a chromosomal scaffold. However, after staining with antibodies to XCAP-E and topoisomerase IIalpha some structures were revealed in metaphase cells having both localization and morphology of a chromosomal scaffold. The cell residuals were not stained with antibodies to XCAP-E and topoisomerase IIalpha, if the nuclear matrix and chromosomal scaffold were destabilized by addition of beta-mercaptoethanol.  相似文献   

11.
The function of fibroblast cells in wounded areas results in reconstruction of the extra cellular matrix and consequently resolution of granulation tissue. It is suggested that the use of platelet-rich plasma can accelerate the healing process in nonhealing or slow-healing wounds. In this study, a simple and novel method has been used to fabricate an electrospun three-layered scaffold containing plasma rich in growth factor with the aim of increasing the proliferation and migration of fibroblast cells in vitro. First, plasma rich in growth factor was derived from platelet rich plasma, and then a three-layered scaffold was fabricated using PLLA nanofibers as the outer layers and plasma rich in growth factor-containing gelatin fibers as the internal layer. The growth morphology of cells seeded on this scaffold was compared to those seeded on one layered PLLA scaffold. The study of the cell growth rate on different substrates and the migration of cells in response to the drug release of multilayered scaffold was investigated by the cell quantification assay and a modified under agarose assay. Scanning electron microscopy and fluorescence images showed that cells seeded on multilayered scaffold were completely oriented 72 hours after seeding compared to those seeded on PLLA scaffold. The cell quantification assay also indicated significant increase in proliferation rate of cells seeded on three-layered scaffold compared to those seeded on PLLA scaffold and finally, monitoring cell migration proved that cells migrate significantly toward the three-layered scaffold up to 48 to 72 hours and afterwards start to show a diminished migration rate toward this scaffold.  相似文献   

12.
The research goal of this experiment is chemically to cross-link poly(vinyl alcohol) (PVA) and starch to form a 3D scaffold that is effective water absorbent, has a stable structure, and supports cell growth. PVA and starch can be chemically cross-linked to form a PVA-g-starch 3D scaffold polymer, as observed by Fourier transform infrared spectroscopy (FTIR), with an absorbency of up to 800%. Tensile testing reveals that, as the amount of starch increases, the strength of the 3D scaffold strength reaches 4 × 10−2 MPa. Scanning electron microscope (SEM) observations of the material reveal that the 3D scaffold is highly porous formed using a homogenizer at 500 rpm. In an enzymatic degradation, the 3D scaffold was degraded by various enzymes at a rate of up to approximately 30–60% in 28 days. In vitro tests revealed that cells proliferate and grow in the 3D scaffold material. Energy dispersive spectrometer (EDS) analysis further verified that the bio-compatibility of this scaffold.  相似文献   

13.
Liang S  Liu Z  Li W  Ni L  Lai L 《Biopolymers》2000,54(7):515-523
We have developed a strategy for grafting a protein-protein interface based on the known crystal structure of a native ligand and receptor proteins in a complex. The key interaction residues at the ligand protein binding interface are transferred onto a scaffold protein so that the mutated scaffold protein will bind the receptor protein in the same manner as the ligand protein. First, our method identifies key residues and atoms in the ligand protein, which strongly interact with the receptor protein. Second, this method searches the scaffold protein for combinations of candidate residues, among which the distance between any two candidate residues is similar to that between relevant key interaction residues in the ligand protein. These candidate residues are mutated to key interaction residues in the ligand protein respectively. The scaffold protein is superposed onto the ligand protein based upon the coordinates of corresponding atoms, which are assumed to strongly interact with the receptor protein. Complementarity between scaffold and receptor proteins is evaluated. Scaffold proteins with a low superposing rms difference and high complementary score are accepted for further analysis. Then, the relative position of the scaffold protein is adjusted so that the interfaces between the scaffold and receptor proteins have a reasonable packing density. Other mutations are also considered to reduce the desolvation energy or bad steric contacts. Finally, the scaffold protein is cominimized with the receptor protein and evaluated. To test the method, the binding interface of barstar, the inhibitor of barnase, was grafted onto small proteins. Four scaffold proteins with high complementary scores are accepted.  相似文献   

14.
微环境影响着细胞的增殖、迁移、分化以及细胞功能,细胞微环境影响细胞命运的因素包括细胞之间相互作用、细胞与细胞外基质相互作用、可溶性信号分子以及缺氧和营养对细胞的影响。组织工程支架的制备就是要利用仿生学原理最大程度模拟细胞微环境,从而应用于细胞行为研究以及临床治疗。全面了解细胞微环境对细胞的影响因素是制备组织工程支架的重要条件,而组织工程支架的研究也进一步推动了细胞微环境对细胞影响的认识。组织工程支架研究在组织工程研究中仍具有广阔前景,新的制备工艺也在组织工程支架研究中发挥着巨大推动作用。  相似文献   

15.
This article demonstrates the application of time‐lapsed imaging and image processing to inform the supercritical processing of tissue scaffolds that are integral to many regenerative therapies. The methodology presented provides online quantitative evaluation of the complex process of scaffold formation in supercritical environments. The capabilities of the developed system are demonstrated through comparison of scaffolds formed from polymers with different molecular weight and with different venting times. Visual monitoring of scaffold fabrication enabled key events in the supercritical processing of the scaffolds to be identified including the onset of polymer plasticization, supercritical points and foam formation. Image processing of images acquired during the foaming process enabled quantitative tracking of the growing scaffold boundary that provided new insight into the nature of scaffold foaming. Further, this quantitative approach assisted in the comparison of different scaffold fabrication protocols. Observed differences in scaffold formation were found to persist, post‐fabrication as evidenced by micro x‐ray computed tomography (μ x‐ray CT) images. It is concluded that time‐lapsed imaging in combination with image processing is a convenient and powerful tool to provide insight into the scaffold fabrication process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
Kim M  Hong B  Lee J  Kim SE  Kang SS  Kim YH  Tae G 《Biomacromolecules》2012,13(8):2287-2298
Delivering isolated chondrocytes with matrix is a promising approach to promote the cartilage repair. The present study attempted to combine the advantages of porous scaffold and hydrogel in delivering chondrocytes to partial-thickness cartilage defects. An electrospun, gelatin-incorporated PLCL scaffold mechanically similar to natural cartilage was fabricated, and chondrocytes were seeded using an injectable heparin-based hydrogel for efficient cell seeding. The scaffold/hydrogel composite showed more enhanced expression of chondrogenic genes and production of GAGs than those prepared without hydrogel. In addition, significant cartilage formation showing good integration with surrounding, similar to natural cartilage, was observed by scaffold/hydrogel composite system in partial-thickness defects of rabbit knees while no regeneration was observed in control defects. Although no exogenous chondrogenic factors were added, it was evident that the scaffold/hydrogel composite system was highly effective and better than the scaffold alone system without hydrogel for cartilage regeneration both in vitro and in vivo.  相似文献   

17.
Sheval' EV  Poliakov VIu 《Ontogenez》2006,37(6):405-418
Chromosome scaffold represents a continuous protein substructure revealed in isolated metaphase chromosomes after harsh extraction. According to postulates of the widespread radial loop model the scaffold plays an important role in the formation and maintenance of structural integrity of the mitotic chromosomes. Here, the data concerning the structure and major components of the chromosome scaffold are presented. The experiments suggesting that the scaffold represents a system of discrete linker proteins and the data about high mobility of scaffolding proteins are discussed. Furthermore, the data about higher-level chromatin structures (elementary chromonema and 200-250 nm fibers) and behavior of scaffolding proteins are compared. The results presented agree with the idea that at the present stage it is possible to discriminate chromatin complexes, whose structural integrity is not maintained by the chromosome scaffold.  相似文献   

18.
In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR), transmission electron microscope(TEM), scanning electron microscope(SEM), universal material testing machine and phosphate buffer solution (PBS) soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs) culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material.  相似文献   

19.
The distribution of bone-marrow stromal cells (BMSC) was studied in 3D polylactide scaffolds. Seeding of cells into the scaffold by the dynamic method (with the aid of a peristaltic pump) has been shown to provide distribution of cells throughout the entire scaffold volume, unlike the static method of seeding, in which the cell suspension is applied onto the scaffold surface. Unlike the cells seeded into the scaffold by the dynamic method, the cells seeded by the static method practically completely migrate from the scaffold on the dish for the first several days. It is revealed that BMSCs cultivated in 3D polylactide scaffolds modified by fibrin form colonies, whereas BMSCs cultivated inside scaffolds modified by collagen type 1 distribute all over the scaffold volume in the form of individual cells.  相似文献   

20.
Silk fibroin-typeⅡcollagen scaffold was made by 3D printing technique and freeze-drying method, and its mechanical properties were studied by experiments and theoretical prediction. The results show that the three-dimensional silk fibroin-typeⅡ collagen scaffold has good porosity and water absorption, which is (89.3%+3.26%) and (824.09%+93.05%), respectively. With the given strain value, the stress of scaffold decreases rapidly firstly and then tends to be stable during the stress relaxation. Both initial and instantaneous stresses increase with increase of applied strain value. The creep strains of scaffold with different stress levels show the two stages: the rapidly increasing stage and the second stable stage. It is noted that the scaffold with compressive stress of less than 35 kPa can recover when the compressive stress is removed. However when the compressive stress is higher than 50 kPa, the scaffold is damaged and its structure is destroyed. Not only the compressive property but tensile property of scaffold are dependent on the applied displacement rate or strain rate. Its compressive elastic modulus and tensile modulus increase with increase of strain rate or displacement rate. The nonlinear relaxation model and creep model were constructed respectively and applied to predict the stress relaxation behavior and creep behavior of scaffold. It is found that there are good agreements between the experimental data and predictions, which mean that the built theoretical model can predict the mechanical behavior of scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号