首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetically encoded fluorescence resonance energy transfer (FRET) indicators are powerful tools for real-time detection of second messenger molecules and activation of signal proteins. However, these fluorescent protein-based sensors typically display marginal FRET efficiency. To improve their FRET efficiency for optical imaging and screening, we developed a number of fluorescent protein mutants based on cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). To improve FRET ratios, which were initially within a narrow dynamic range, we used DNA shuffling to develop a new FRET pair called 3xCFP/Venus. The optimized 3xCFP/Venus pair exhibited higher FRET ratios than CyPet/YPet, which has one of the greatest dynamic ranges of protein-based FRET pairs. We converted this FRET pair to a Ca(2+) FRET indicators using circular permutation Venus (cpVenus) linked with 3xCFP to form 3xCFP/cpVenus, which displayed an ~11-fold change in dynamic range in response to Ca(2+) binding. The enhanced dynamic range for Ca(2+) concentration detection using 3xCFP/cpVenus was confirmed in PC12 cells using previously established indicators (TN-XXL, ECFP/cpCitrine). To our knowledge, this FRET pair displays the largest dynamic range so far among genetically-encoded sensors, and can be used for sensitive FRET detection.  相似文献   

2.
Genetically encoded fluorescence resonance energy transfer (FRET) indicators are powerful tools for real-time detection of second messenger molecules and activation of signal proteins. However, these fluorescent protein-based sensors typically display marginal FRET efficiency. To improve their FRET efficiency for optical imaging and screening, we developed a number of fluorescent protein mutants based on cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). To improve FRET ratios, which were initially within a narrow dynamic range, we used DNA shuffling to develop a new FRET pair called 3xCFP/Venus. The optimized 3xCFP/Venus pair exhibited higher FRET ratios than CyPet/YPet, which has one of the greatest dynamic ranges of protein-based FRET pairs. We converted this FRET pair to a Ca2+ FRET indicators using circular permutation Venus (cpVenus) linked with 3xCFP to form 3xCFP/cpVenus, which displayed an ∼11-fold change in dynamic range in response to Ca2+ binding. The enhanced dynamic range for Ca2+ concentration detection using 3xCFP/cpVenus was confirmed in PC12 cells using previously established indicators (TN-XXL, ECFP/cpCitrine). To our knowledge, this FRET pair displays the largest dynamic range so far among genetically-encoded sensors, and can be used for sensitive FRET detection.  相似文献   

3.
We report what to our knowledge is a novel approach for simultaneous imaging of two different Förster resonance energy transfer (FRET) sensors in the same cell with minimal spectral cross talk. Previous methods based on spectral ratiometric imaging of the two FRET sensors have been limited by the availability of suitably bright acceptors for the second FRET pair and the spectral cross talk incurred when measuring in four spectral windows. In contrast to spectral ratiometric imaging, fluorescence lifetime imaging (FLIM) requires measurement of the donor fluorescence only and is independent of emission from the acceptor. By combining FLIM-FRET of the novel red-shifted TagRFP/mPlum FRET pair with spectral ratiometric imaging of an ECFP/Venus pair we were thus able to maximize the spectral separation between our chosen fluorophores while at the same time overcoming the low quantum yield of the far red acceptor mPlum. Using this technique, we could read out a TagRFP/mPlum intermolecular FRET sensor for reporting on small Ras GTP-ase activation in live cells after epidermal growth factor stimulation and an ECFP/Venus Cameleon FRET sensor for monitoring calcium transients within the same cells. The combination of spectral ratiometric imaging of ECFP/Venus and high-speed FLIM-FRET of TagRFP/mPlum can thus increase the spectral bandwidth available and provide robust imaging of multiple FRET sensors within the same cell. Furthermore, since FLIM does not require equal stoichiometries of donor and acceptor, this approach can be used to report on both unimolecular FRET biosensors and protein-protein interactions with the same cell.  相似文献   

4.
Enhanced cyan and yellow fluorescent proteins are widely used for dual color imaging and protein-protein interaction studies based on fluorescence resonance energy transfer. Use of these fluorescent proteins can be limited by their thermosensitivity, dim fluorescence, and tendency for aggregation. Here we report the results of a site-directed mutagenesis approach to improve these fluorescent proteins. We created monomeric optimized variants of ECFP and EYFP, which fold faster and more efficiently at 37 degrees C and have superior solubility and brightness. Bacteria expressing SCFP3A were 9-fold brighter than those expressing ECFP and 1.2-fold brighter than bacteria expressing Cerulean. SCFP3A has an increased quantum yield (0.56) and fluorescence lifetime. Bacteria expressing SYFP2 were 12 times brighter than those expressing EYFP(Q69K) and almost 2-fold brighter than bacteria expressing Venus. In HeLa cells, the improvements were less pronounced; nonetheless, cells expressing SCFP3A and SYFP2 were both 1.5-fold brighter than cells expressing ECFP and EYFP(Q69K), respectively. The enhancements of SCFP3A and SYFP2 are most probably due to an increased intrinsic brightness (1.7-fold and 1.3-fold for purified recombinant proteins, compared to ECFP & EYFP(Q69K), respectively) and due to enhanced protein folding and maturation. The latter enhancements most significantly contribute to the increased fluorescent yield in bacteria whereas they appear less significant for mammalian cell systems. SCFP3A and SYFP2 make a superior donor-acceptor pair for fluorescence resonance energy transfer, because of the high quantum yield and increased lifetime of SCFP3A and the high extinction coefficient of SYFP2. Furthermore, SCFP1, a CFP variant with a short fluorescence lifetime but identical spectra compared to ECFP and SCFP3A, was characterized. Using the large lifetime difference between SCFP1 and SCFP3A enabled us to perform for the first time dual-lifetime imaging of spectrally identical fluorescent species in living cells.  相似文献   

5.
Regulators of G-protein signaling (RGS) are a family of proteins which accelerate intrinsic GTP-hydrolysis on heterotrimeric G-protein-alpha-subunits. Although it has been suggested that the function of RGS4 is reciprocally regulated by competitive binding of the membrane phospholipid, phosphatidylinositol-3,4,5,-trisphosphate(PtdIns(3,4,5)P(3)), and Ca(2+)/calmodulin (CaM), it remains to be shown that these interactions occur in vivo. Here, using fluorescence resonance energy transfer (FRET) techniques, we show that an elevation of intracellular Ca(2+) concentration by ionomycin increased the FRET efficiency from ECFP (a variant of cyan fluorescent protein)-labeled calmodulin to Venus (a variant of yellow fluorescent protein)-labeled RGS4. The increase in FRET efficiency was greatly attenuated by pre-treating the cells with methyl-beta-cyclodextrin, which depletes membrane cholesterol and thus disrupts lipid rafts. These results provide the first demonstration of a Ca(2+)-dependent interaction between RGS4 and CaM in vivo and show that association in lipid rafts of the plasma membrane might be involved in this physiological regulation of RGS proteins.  相似文献   

6.
Fluorescence cross-correlation spectroscopy (FCCS) reveals information about the spatiotemporal coincidence of two spectrally well-defined fluorescent molecules in a small observation area at the level of single-molecule sensitivity. To simultaneously evaluate the activities of caspase-3 and caspase-9, we constructed a chimeral protein that consisted of tandemly fused enhanced cyan fluorescent protein (ECFP), monomeric red fluorescent protein (mCherry) and monomeric yellow fluorescent protein (Venus). In HeLa cell lysates, a combination of tumor necrosis factor-α (TNF-α)- and cycloheximide (CHX-)-induced apoptosis was monitored. In this, decreases of cross-correlation amplitudes were observed between ECFP and mCherry and between mCherry and Venus. Moreover, time-dependent monitoring of single cells revealed decreases in the cross-correlation amplitudes between ECFP and mCherry and between mCherry and Venus before morphologic changes were observed by laser scanning fluorescence microscopy (LSM). Thus, our method could predict the fate of the cell in the early apoptotic stage.  相似文献   

7.
The NMR solution structure of a highly stable coiled-coil IAAL-E3/K3 has been solved. The E3/K3 coiled-coil is a 42-residue de novo designed coiled-coil comprising three heptad repeats per subunit, stabilized by hydrophobic contacts within the core and electrostatic interactions at the interface crossing the hydrophobic core which direct heterodimer formation. This E3/K3 domain has previously been shown to have high alpha-helical content as well as possessing a low dissociation constant (70 nM). The E3/K3 structure is completely alpha-helical and is an archetypical coiled-coil in solution, as determined using a combination of (1)H-NOE and homology based structural restraints. This structure provides a structural framework for visualizing the important interactions for stability and specificity, which are key to protein engineering applications such as affinity purification and de novo design.  相似文献   

8.
Many genetically encoded biosensors use F?rster resonance energy transfer (FRET) between fluorescent proteins to report biochemical phenomena in living cells. Most commonly, the enhanced cyan fluorescent protein (ECFP) is used as the donor fluorophore, coupled with one of several yellow fluorescent protein (YFP) variants as the acceptor. ECFP is used despite several spectroscopic disadvantages, namely a low quantum yield, a low extinction coefficient and a fluorescence lifetime that is best fit by a double exponential. To improve the characteristics of ECFP for FRET measurements, we used a site-directed mutagenesis approach to overcome these disadvantages. The resulting variant, which we named Cerulean (ECFP/S72A/Y145A/H148D), has a greatly improved quantum yield, a higher extinction coefficient and a fluorescence lifetime that is best fit by a single exponential. Cerulean is 2.5-fold brighter than ECFP and replacement of ECFP with Cerulean substantially improves the signal-to-noise ratio of a FRET-based sensor for glucokinase activation.  相似文献   

9.
10.
The technique of fluorescence (or F?rster) resonance energy transfer (FRET) is widely used to observe bimolecular interaction in living cells. Cyan and yellow fluorescent proteins are the most widely used pair in FRET analysis. CyPet and YPet are two newly optimized fluorescent proteins that have much better dynamic range and sensitivity than CFP/YFP pair, although the crystallographic structure and the mechanism of better fluorescent characteristics of CyPet are still unknown. We have expressed the cyan fluorescent protein CyPet using pT7 prokaryocyte expression system in Escherichia coli strain Rosetta (DE3) pLysS by auto-induction. After purification, the recombinant CyPet protein was crystallized by hanging drop vapor diffusion technique and could diffract to 2.55A resolution. The data showed that the orthorhombic CyPet crystal was in space group P212121 with unit cell parameters (51.55, 61.53, 63.36) and contained one molecule in one asymmetric unit.  相似文献   

11.
Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC(4)(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC(4)(5). The peak DeltaF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC(4)(5) exhibit DeltaF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS.  相似文献   

12.
Ono S  Yano Y  Matsuzaki K 《Biopolymers》2012,98(3):234-238
We have developed a method of rapidly labeling membrane proteins in living cells using a high-affinity heterodimeric coiled-coil construct containing an E3 tag (EIAALEK)(3) genetically fused to the target protein and a K4 probe (KIAALKE)(4) labeled with a fluorophore such as tetramethylrhodamine (TMR) at its N-terminus (TMR-K4). However, coiled-coil labeling cannot be applied to highly negatively charged cell lines such as HEK293, because of the nonspecific adsorption of the positively charged K4 probes to cell membranes. To reduce the net positive charge, we synthesized new probes that include phosphoserine residues (pSer) between the K4 sequence and TMR fluorophore (TMR-(pSer)(n)-K4, [n = 1-3]). The affinity of the pSer-introduced probes was comparable to that of the TMR-K4 probe. However, the TMR-(pSer)(2)-K4 and TMR-(pSer)(3)-K4 probes tended to aggregate during labeling. In contrast, TMR-pSer-K4, which was as soluble as TMR-K4, achieved higher signal/background ratios (30-100) for four host cell lines (HEK293, HeLa, SH-SY5Y, and PC12) than did TMR-K4 (~10 for HEK293 cells), demonstrating that the improved probe can be used for various types of cells.  相似文献   

13.
The fluorescent proteins ECFP and HcRed were shown to give an easily resolved FRET-signal when expressed as a fusion inside mammalian cells. HeLa-tat cells expressing ECFP, pHcRed, or the fusion protein pHcRed-ECFP were analyzed by flow cytometry after excitation of ECFP. Cells expressing HcRed-ECFP, or ECFP and HcRed, were mixed and FACS-sorted for FRET positive cells: HcRed-ECFP cells were greatly enriched (72 times). Next, cloned human antibodies were fused with ECFP and expressed anchored to the ER membrane. Their cognate antigens (HIV-1 gp120 or gp41) were fused to HcRed and co-expressed in the ER. An increase of 13.5+/-1.5% (mean+/-SEM) and 8.0+/-0.7% in ECFP fluorescence for the specific antibodies reacting with gp120 or gp41, respectively, was noted after photobleaching. A positive control (HcRed-ECFP) gave a 14.8+/-2.6% increase. Surprisingly, the unspecific antibody (anti-TT) showed 12.1+/-1.1% increase, possibly because overexpression in the limited ER compartment gave false FRET signals.  相似文献   

14.
Oligomerization and conformational changes in the Na+/H+ antiporter from Helicobacter pylori (HPNhaA) were studied by means of fluorescence resonance energy transfer (FRET) analysis. Na+/H+ antiporter-deficient Escherichia coli cells expressing C-terminal fusions of HPNhaA to green fluorescent protein (GFP) variants exhibited wild-type levels of antiporter activity in their everted membrane vesicles. Vesicles containing both HPNhaA-CFP and HPNhaA-YFP or HPNhaA-Venus exhibited FRET from CFP (donor) to YFP or Venus (acceptor), suggesting that HPNhaA forms an oligomer. Co-precipitation of HPNhaA tagged by Venus and FLAG sequences confirmed oligomerization. FRET decreased extensively after treatment of the vesicles with proteinase K, which released GFP variants from the fusion proteins. FRET was not observed by merely mixing vesicles expressing the donor or acceptor fusion alone. Fluorescence of Venus is less sensitive to anions and stronger than that of anion-sensitive YFP. Using HPNhaA-Venus as the acceptor, Li+ was found to cause a significant decrease in FRET regardless of the presence or absence of DeltapH across the membranes, whereas Na+ caused a much weaker effect. This Li+ effect was minimal in vesicles prepared from cells expressing HPNhaA containing an Asp141 to Asn mutation, which results in defective Li+/H+ antiporter activity, possibly Li+ binding. These results demonstrate that monomer interactions within the HPNhaA oligomer are weakened possibly by Li+ binding. Dynamic interactions between HPNhaA monomers were detectable in membranes by FRET analysis, thus providing a new approach to study dynamic conformational changes in NhaA during antiport activity.  相似文献   

15.
A protease can be defined as an enzyme capable of hydrolyzing peptide bonds. Thus, characterization of a protease involves identification of target peptide sequences, measurement of activities toward these sequences, and determination of kinetic parameters. Biological protease substrates based on fluorescent protein pairs, which allow for use of fluorescence resonance energy transfer (FRET), have been recently developed for in vivo protease activity detection and represent a very interesting alternative to chemical substrates for in vitro protease characterization. Here, we analyze a FRET system consisting of cyan and yellow fluorescent proteins (CFP and YFP, respectively), which are fused by a peptide linker serving as protease substrate. Conditions for CFP-YFP fusion protein production in Escherichia coli and purification of proteins were optimized. FRET between CFP and YFP was found to be optimum at a pH between 5.5 and 10.0, at low concentrations of salt and a temperature superior to 25 degrees C. For efficient FRET to occur, the peptide linker between CFP and YFP can measure up to 25 amino acids. The CFP-substrate-YFP system demonstrated a high degree of resistance to nonspecific proteolysis, making it suitable for enzyme kinetic analysis. As with chemical substrates, substrate specificity of CFP-substrate-YFP proteins was tested towards different proteases and kcat/Km values were calculated.  相似文献   

16.
Oligomerization of the short (D(2S)) and long (D(2L)) isoforms of the dopamine D(2) receptor was explored in transfected Cos-7 cells by their C-terminal fusion to either an enhanced cyan or enhanced yellow fluorescent protein (ECFP or EYFP) and the fluorescent fusion protein interaction was monitored by a fluorescence resonance energy transfer (FRET) assay. The pharmacological properties of the fluorescent fusion proteins, as measured by both displacement of [(3)H]nemonapride binding and agonist-mediated stimulation of [(35)S]GTPgammaS binding upon co-expression with a G(alphao)Cys(351)Ile protein, were not different from the respective wild-type D(2S) and D(2L) receptors. Co-expression of D2S:ECFP+D2S:EYFP in a 1:1 ratio and D2L:ECFP+D2L:EYFP in a 27:1 ratio resulted, respectively, in an increase of 26% and 16% in the EYFP-specific fluorescent signal. These data are consistent with a close proximity of both D(2S) and D(2L) receptor pairs of fluorescent fusion proteins in the absence of ligand. The agonist-independent D(2S) receptor oligomerization could be attenuated by co-expression with either a wild-type, non-fluorescent D(2S) or D(2L) receptor subtype, but not with a distinct beta(2)-adrenoceptor. Incubation with the agonist (-)-norpropylapomorphine dose-dependently (EC(50): 0.23+/-0.06 nM) increased the FRET signal for the co-expression of D2S:ECFP and D2S:EYFP, in support of agonist-dependent D(2S) receptor oligomerization. In conclusion, our data strongly suggest the occurrence of dopamine D(2) receptor oligomers in intact Cos-7 cells.  相似文献   

17.
We have detected directly the interactions of sarcolipin (SLN) and the sarcoplasmic reticulum Ca-ATPase (SERCA) by measuring fluorescence resonance energy transfer (FRET) between fusion proteins labeled with cyan fluorescent protein (donor) and yellow fluorescent protein (acceptor). SLN is a membrane protein that helps control contractility by regulating SERCA activity in fast-twitch and atrial muscle. Here we used FRET microscopy and spectroscopy with baculovirus expression in insect cells to provide direct evidence for: 1) oligomerization of SLN and 2) regulatory complex formation between SLN and the fast-twitch muscle Ca-ATPase (SERCA1a isoform). FRET experiments demonstrated that SLN monomers self-associate into dimers and higher order oligomers in the absence of SERCA, and that SLN monomers also bind to SERCA monomers in a 1:1 binary complex when the two proteins are coexpressed. FRET experiments further demonstrated that the binding affinity of SLN for itself is similar to that for SERCA. Mutating SLN residue isoleucine-17 to alanine (I17A) decreased the binding affinity of SLN self-association and converted higher order oligomers into monomers and dimers. The I17A mutation also decreased SLN binding affinity for SERCA but maintained 1:1 stoichiometry in the regulatory complex. Thus, isoleucine-17 plays dual roles in determining the distribution of SLN homo-oligomers and stabilizing the formation of SERCA-SLN heterodimers. FRET results for SLN self-association were supported by the effects of SLN expression in bacterial cells. We propose that SLN exists as multiple molecular species in muscle, including SERCA-free (monomer, dimer, oligomer) and SERCA-bound (heterodimer), with transmembrane zipper residues of SLN serving to stabilize oligomeric interactions.  相似文献   

18.
We report the construction of a cell-based fluorescent reporter for anthrax lethal factor (LF) protease activity using the principle of fluorescence resonance energy transfer (FRET). This was accomplished by engineering an Escherichia coli cell line to express a genetically encoded FRET reporter and LF protease. Both proteins were encoded in two different expression plasmids under the control of different tightly controlled inducible promoters. The FRET-based reporter was designed to contain a LF recognition sequence flanked by the FRET pair formed by CyPet and YPet fluorescent proteins. The length of the linker between both fluorescent proteins was optimized using a flexible peptide linker containing several Gly-Gly-Ser repeats. Our results indicate that this FRET-based LF reporter was readily expressed in E. coli cells showing high levels of FRET in vivo in the absence of LF. The FRET signal, however, decreased five times after inducing LF expression in the same cell. These results suggest that this cell-based LF FRET reporter may be used to screen genetically encoded libraries in vivo against LF.  相似文献   

19.
We have de novo designed a heterodimeric coiled-coil formed by two peptides as a capture/delivery system that can be used in applications such as affinity tag purification, immobilization in biosensors, etc. The two strands are designated as K coil (KVSALKE heptad sequence) and E coil (EVSALEK heptad sequence), where positively charged or negatively charged residues occupy positions e and g of the heptad repeat. In this study, for each E coil or K coil, three peptides were synthesized with lengths varying from three to five heptads. The effect of the chain length of each partner upon the kinetic and thermodynamic constants of interaction were determined using a surface plasmon resonance-based biosensor. Global fitting of the interactions revealed that the E5 coil interacted with the K5 coil according to a simple binding model. All the other interactions involving shorter coils were better described by a more complex kinetic model involving a rate-limiting reorganization of the coiled-coil structure. The affinities of these de novo designed coiled-coil interactions were found to range from 60 pM (E5/K5) to 30 microM (E3/K3). From these K(d) values, we were able to determine the free energy contribution of each heptad, depending on its relative position within the coiled-coils. We found that the free energy contribution of a heptad occupying a central position was 3-fold higher than that of a heptad at either end of the coiled-coil. The wide range of stabilities and affinities for the E/K coil system provides considerable flexibility for protein engineering and biotechnological applications.  相似文献   

20.
Fluorescent chimeras composed of enhanced cyan (or enhanced yellow) fluorescent proteins (ECFP or EYFP) and one of the four human small heat shock proteins (HspB1, HspB5, HspB6 or HspB8) were expressed in E. coli and purified. Fluorescent chimeras were used for investigation of heterooligomeric complexes formed by different small heat shock proteins (sHsp) and for analysis of their subunit exchange. EYFP-HspB1 and ECFP-HspB6 form heterooligomeric complex with apparent molecular weight of ∼280 kDa containing equimolar quantities of both sHsp. EYFP-HspB5 and ECFP-HspB6 formed heterogeneous oligomeric complexes. Fluorescent proteins inside heterooligomeric complexes formed by HspB1/HspB6 and HspB5/HspB6 chimeras are closely located, making possible effective fluorescence resonance energy transfer (FRET). Neither the wild type HspB8 nor its fluorescent chimeras were able to form stable heterooligomeric complexes with the wild type HspB1 and HspB5. Homo- and hetero-FRET was used for analysis of subunit exchange of small heat shock proteins. The apparent rate constant of subunit exchange was temperature-dependent and was higher for HspB6 forming small oligomers than for HspB1 forming large oligomers. Replacement induced by homologous subunits was more rapid than the replacement induced by heterologous subunits of small heat shock proteins. Fusion of fluorescent proteins might affect oligomeric structure of small heat shock proteins, however fluorescent chimeras can be useful for investigation of heterooligomeric complexes formed by sHsp and for analysis of kinetics of their subunit exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号