首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
Seagrass transplants (plant units [PUs]) were established to examine the feasibility of seagrass rehabilitation in Cockburn Sound, Western Australia. Five hundred and twenty plant units (plugs and sprigs) of Posidonia sinuosa Cambridge et Kuo were placed at seven locations at depths of 3, 5, and 9 m and monitored to determine the influence of transplant method, location, and depth upon survival and growth over 2 years. Depending on the site, more plugs had survived at the completion of the trial (mean survival 41%) than sprigs (mean survival 15%). Plug and sprig survival differed significantly with transplant depth, decreasing overall with increasing depth. Forty‐five percent of surviving plugs and 50% of sprigs exhibited horizontal rhizome extension. Mean rhizome extension after 2 years was 9.5 cm/plug (1–23 cm) and 18.3 cm/sprig (0.5–31 cm). Declines in PU survival and variable growth correlate with site‐specific variability in light climate. Plug transplantation was deemed the most suitable method for further manual seagrass rehabilitation, exhibiting higher survival across all sites and conditions; however, they are costly to deploy. Sprig PUs have greatest potential in shallow water with fine sands, moderate water movement, and maximum light availability. The low cost of deploying sprigs may outweigh their lower survival compared to plugs; further efforts should be directed to enhancing survival of sprig PUs under a wider range of conditions. Suitable locations for future rehabilitation efforts in Cockburn Sound were the Eastern and Western Banks and shallow areas off Woodman Point and Mangles Bay.  相似文献   

2.
Bishop MJ  Peterson CH 《Oecologia》2006,147(3):426-433
The paradigmatic gradient for intertidal marine organisms of increasing physical stress from low to high elevation has long served as the basis for using direct effects of duration of water coverage to predict many biological patterns. Accordingly, changes in potential feeding time may predict the direction and magnitude of differences between elevations in individual growth rates of sessile marine invertebrates. Oysters (triploid Crassostrea ariakensis) experimentally introduced at intertidal (MLW+0.05 m) and subtidal (MLW–0.25 m) elevations in racks provided a test of the ability to use duration of water coverage to predict changes in growth. During early-to-mid winter, a depression of 38–47% in shell growth of intertidal oysters matched the 36% reduction in available feeding time relative to subtidal oysters. In late winter as solar heating of exposed oysters increased, growth differences of 52–55% departed only slightly from the predicted 39%. In spring, however, duration of water coverage failed to predict even the correct direction of growth change with elevation as intertidal oysters grew 34% faster despite 39% less feeding time. Intense seasonal development of shell fouling by other suspension feeders like ascidians, mussels, and barnacles on subtidal (94% incidence) but not on aerially exposed intertidal (21–38% incidence) oysters may explain why duration of water cover failed to predict spring growth differences. Less intense fouling develops on intertidal oysters due to the physiological stress of aerial exposure on settlers, especially during higher temperatures and longer solar exposures of spring. Fouling by suspension feeders is known to reduce growth of the host through localized competition for food and added energetic costs. Thus, in springtime, indirect effects of aerial exposure providing a partial refuge from biological enemies overwhelmed direct effects of reduced duration of water coverage to reverse the expected pattern of slower intertidal growth of a marine invertebrate.  相似文献   

3.
Hard bottom, subtidal communities along the Western Antarctic Peninsula are dominated by forests of large, chemically defended macroalgae that support a very dense assemblage of amphipods. Free-living filamentous algae are rare in the subtidal, but filamentous algal endophytes are common in many of the larger macroalgae, both likely as the result of amphipod grazing pressure. Filamentous algae are common in the intertidal, but primarily in the upper intertidal and on high-energy shores where amphipods are likely to be excluded much of the time. We tested the hypothesis that free-living, filamentous algae would be rapidly consumed if transplanted from the intertidal to the subtidal, and our results clearly supported this hypothesis. The filamentous, intertidal green alga Cladophora repens was transplanted to the benthos in 6 different macroalgal habitats. Control algae were transplanted in 3 m deeper waters nearby (usually 12 m or less laterally) but suspended 3 m off the bottom where amphipods are absent or rare. Overall consumption during approximately 6 h on the bottom ranged from 22 to 98% of the initial biomass, while significantly less biomass loss occurred in the water column.  相似文献   

4.
Morphological, demographic and physiological characteristics of Rhode Island intertidal and subtidal populations of Ascophyllum nodosum (L.) Le Jolis were compared in order to examine factors influencing vertical distribution. The two populations had distinctive morphologies: subtidal plants were narrower (more terete) and highly branched compared with intertidal plants. The subtidal population showed signs of necrosis and breakage, which was reflected in significantly shorter mean plant size. High survivorship and low recruitment of both population resulted in relatively constant densities, averaging 91 and 50 plants per m2 in the intertidal and subtidal habitats, respectively. Intertidal plants had higher mean annual growth rates (25 cm.yr?1) than subtidal plants (2 cm.yr?1). In general, intertidal plants had higher photosynthetic capacity and nutrient (NO3?) uptake rates than the subtidal population but maintained lower light-harvesting pigment and tissue nitrogen concentrations. Although Ascophyllum nodosum is capable of survival and growth in subtidal as well as intertidal areas, results of this study suggest that different selective pressures affect persistence in each habitat. The scarcity of plants in the subtidal environment may be due to the lack of a critical balance between algal production, allocation of photosynthate, and the negative effects of grazers or competitors.  相似文献   

5.
The potential driving force(s) of the vertical distribution of subtidal barnacle Balanus trigonus Darwin were investigated using both field and laboratory experiments. Early juveniles (∼24 h old) placed in intertidal [∼0.5 m above mean low water level (MLWL)] and subtidal (∼3 m below MLWL) habitats survived equally well, indicating that the intertidal absence of B. trigonus in Hong Kong waters was not determined by differential mortality. However, enhanced attachment of cyprids in subtidal habitats indicated the importance of differential larval choice in determining their vertical distribution. In the laboratory, cyprids preferred to attach in response to subtidal microbial films, which may implicate microbial films as a primary cue in driving the adult vertical distribution. Microbial films developed in these two habitats differed in their biomass (=total organic carbon), abundance of bacteria and diatoms (determined by fluorescence microscopy), and bacterial diversity (determined by DNA fingerprinting analysis). For example, 6-day films in subtidal habitat had a significantly higher biomass than in films from intertidal habitat (P<0.05). There was no difference in the biomass of films from these two habitats in 9-day films (P>0.05); however, bacterial abundance was greater in subtidal films than in intertidal films, irrespective of the age of the film, although there was no difference in diatom abundance in films from these two habitats. Neither the abundance of bacteria and diatoms nor the biomass correlated with the attachment preferences of cyprids. This study has not provided any data to prove the existence of inductive and inhibitive (to cyprid attachment) bacterial species in subtidal and intertidal films, respectively; however, results indicate that bacterial community provided qualitative information that might explain the preferential attachment of B. trigonus cyprids in subtidal habitat.  相似文献   

6.
In this study we used pinfish (Lagodon rhomboides) in field experiments to examine linkages between intertidal saltmarsh and adjacent subtidal habitats. Pinfish are more than twice as abundant in intertidal marshes adjacent to seagrass beds than in those adjacent to the unvegetated subtidal bottom. Movement of pinfish between the marsh edge and the adjacent subtidal habitat was greater for fish captured in areas with both intertidal and subtidal vegetation than in those with intertidal vegetation and adjacent unvegetated mudflats. This movement provides an important link between habitats, allowing transfer of marsh-derived secondary production to subtidal seagrass beds and vice versa. Pinfish held in enclosures with both intertidal and subtidal vegetation were, on average, approximately 90% heavier than fish held in enclosures with intertidal vegetation and unvegetated subtidal bottom. Because saltmarshes and seagrass beds contribute to the production of living marine resources, active measures are being taken to preserve and restore these habitats. The results from this study have direct application to decisions concerning site selection and optimal spatial proximity of saltmarsh and seagrass habitats in the planning of restoration and mitigation projects. To maximize secondary production and utilization of intertidal marshes, managers may opt to restore and/or preserve marshes adjacent to subtidal seagrass beds. Received: 31 May 1996 / Accepted: 23 October 1996  相似文献   

7.
Large seaweeds are often structurally dominant in subtidal and intertidal rocky shore benthic communities of the N.W. Atlantic. The mechanisms by which these algal assemblages are maintained are surprisingly different in the two habitats. In the subtidal community, kelps are dominant space competitors in the absence of strong grazing interactions. In contrast, the large perennial seaweeds of intertidal zones (fucoids and Chondrus crispus) are competitively inferior to both sessile filter feeders and ephemeral, pioneer algal species. Intertidal seaweed beds are maintained by carnivory of whelks, which reduces filter feeder populations, and by herbivorous periwinkles which reduce ephemeral algal populations. Through most of the intertidal zone, disturbance, both biological and physical, dictates which species shall compete and equilibrium conditions obtain subsequently.The roles of subtidal consumers are quite different. Sea urchins are the major algal herbivores and these voracious animals maintain an equilibrium state in which large tracts of subtidal coralline pavement are kept free of kelp forests. Urchins do not seem to play a successional facilitative role for kelps in the way that periwinkles do for fucoids in the intertidal. Control of herbivore populations is thus a key to the maintenance of subtidal foliose algal beds. It is clear that parasitic amoebas can decimate sea urchin populations so that kelp forest dominance is assured. However, the importance of carnivory in limiting urchins in the subtidal community is unclear in the absence of appropriate manipulation experiments. It is possible that carnivorous decapods and fin fish control sea urchin populations and hence foliose algal abundance, but this must remain speculative. The seaweed-dominated state of the subtidal system is an alternative equilibrium condition to the urchin/coralline alga configuration. The structure of the kelp beds is relatively uniform in responding to frequent small-scale, infrequent large-scale, or no, disturbance.  相似文献   

8.
Rilov G  Schiel DR 《PloS one》2011,6(8):e23958
Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat). Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs) is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure.  相似文献   

9.
The surfgrass Phyllospadix japonicus is an abundant seagrass on the exposed rocky shores of the Korean peninsula. Many surfgrass meadows on the coasts of Korea have been adversely affected by anthropogenic activities and natural phenomena such as “rock whitening,” which is caused by overgrowths of crustose coralline algae. Few attempts have been made to develop transplanting techniques for surfgrass, owing to the difficulty of transplant survival on exposed rocky shores. We developed a new Phyllospadix Transplant System (PTS), which was an artificial underwater structure constructed of a 4:5:1 ratio of cement, sand, and water. In January 2005, we transplanted P. japonicus shoots using the newly developed PTS. P. japonicus shoots were tied together at the lower part of the sheaths to iron screws, which were placed in a hollow part of the PTS, with latex elastic. To evaluate the feasibility of this transplantation technique, we compared vegetative and reproductive shoot densities, growth, and morphological characteristics in transplants to those of shoots in nearby natural beds over a 2-year period. Transplant density increased gradually without significant initial shoot loss. Approximately 6 months after transplantation, leaf growth of transplants was similar to that of naturally growing shoots. The shoot heights and sheath lengths of transplants were similar to those of naturally growing shoots at 10–15 months post-planting. Approximately 50 mm of rhizome elongation was detected in P. japonicus transplants over the 2-year period. Since P. japonicus transplants attached to the PTS successfully established at the test area, the transplantation of surfgrass using the PTS may be an effective approach to restoring the habitat of P. japonicus.  相似文献   

10.
Near the East Frisian island of Norderney two sites are investigated permanently in order to study long-term fluctuations of macrozoobenthos: one transect (since 1977) at the northern side in shallow subtidal waters and another one (since 1976) at the sheltered southern side in the intertidal area of the Wadden Sea. Since 1980 the investigations have been continued in the frame of COST-47, sedimentary intertidal programme (including the shallow subtidal habitats colonized by the Macoma balthica community).The results up to 1984, respectively to 1985, are presented and the changes of abundance of the dominant species are discussed. Discussed are also the influences of water temperatures and sediment disturbances caused by wave action. There is evidence that the intertidal variety of the Macoma balthica community shows a greater stability than the subtidal variety.  相似文献   

11.
Marine intertidal organisms are subjected to a variety of abiotic stresses, including aerial exposure and wide ranges of temperature. Intertidal species generally have higher thermal tolerance limits than do subtidal species, and tropical species have higher thermal tolerance limits than do temperate species. The adaptive significance of upper thermal tolerance limits of intertidal organisms, however, has not been examined within a comparative context. Here, we present a comparative analysis of the adaptive significance of upper thermal tolerance limits in 20 congeneric species of porcelain crabs, genus Petrolisthes, from intertidal and subtidal habitats throughout the eastern Pacific. Upper thermal tolerance limits are positively correlated with surface water temperatures and with maximal microhabitat temperatures. Analysis of phylogenetically independent contrasts (from a phylogenetic tree on the basis of the 16s rDNA gene sequence) suggests that upper thermal tolerance limits have evolved in response to maximal microhabitat temperatures. Upper thermal tolerance limits increased during thermal acclimation at elevated temperatures, the amount of increase being greater for subtidal than for intertidal species. This result suggests that the upper thermal tolerance limits of some intertidal species may be near current habitat temperature maxima, and global warming thus may affect the distribution limits of intertidal species to a greater extent than for subtidal species.  相似文献   

12.
In this paper we demonstrate spindle rotation during meiosis in filiform microsporocytes of a dioecious marine monocotyledon. Extensive populations of Phyllospadix torreyi, a seagrass, cover intertidal and shallow subtidal rocks in southern California. Flowering plants are unevenly distributed, being found only in patches within these beds, and apparently are disproportionally few relative to plants that do not produce flowers. Reduction division in male flowers occurs in an already elongate microsporocyte (pollen mother cell), where the chromosomes at metaphase lie in a plane across the narrow axis of the filamentous cell. However, the poles and spindles then rotate through 90° during anaphase of first and second meiotic divisions so that the cells divide longitudinally to produce tetrads which develop into filamentous pollen. Nine bivalents were counted in diakinesis figures. The presence of a heteropycnotic X-chromosome in male flowers is suggested by certain observations of prophase-anaphase figures.  相似文献   

13.
为揭示2008年汶川地震后大熊猫主食竹拐棍竹无性系种群的天然更新状况及影响因子,研究了3种不同地震干扰强度(强度、中度和对照)生境中拐棍竹的生长和发笋状况.结果表明:在3种生境中,拐棍竹存活笋的基径为中度干扰和对照生境显著大于强度干扰生境,存活笋的高度为对照>中度干扰>强度干扰.其发笋密度在3种生境中无显著差异,但强度和中度干扰生境中的存活笋密度显著大于对照,并且1年生和2年生竹密度与死亡竹密度之间呈极显著正相关.拐棍竹的发笋密度、存活笋密度、1年生、2年生和多年生竹密度之间均呈显著正相关,1年生和2年生竹密度与砾石和滑坡土壤盖度呈显著负相关,存活笋密度与郁闭度之间呈显著负相关.  相似文献   

14.
We investigated the presence and kinetics of the oxidative stress response in intertidal and subtidal individuals of the ulvoid macroalga Ulva lactuca L. Stress responses, as measured with both enzymatic and fluorescent‐based antioxidant assays, differed between individuals collected from a subtidal and an intertidal habitat. Subtidal individuals secreted significantly more hydrogen peroxide (H2O2) than intertidal individuals when subjected to osmotic stress or desiccation. The activity of reactive‐oxygen‐scavenging enzymes and the ability to scavenge exogenous H2O2 were lower in subtidal than in intertidal individuals, suggesting that subtidal individuals are less stress tolerant. In vitro experimentation demonstrated that millimolar concentrations of dimethylsulfoniopropionate (DMSP) and its breakdown products could efficiently scavenge H2O2, with DMSP being a less‐effective scavenger than dimethyl sulfide (DMS), acrylic acid, and acrylate. The addition of H2O2 at concentrations of 2.5 mM or greater induced the cleavage of DMSP into DMS and acrylic acid in subtidal individuals. Intertidal individuals were affected in the same manner with the addition of 5 mM H2O2. There were no differences in the amounts of DMSP cleavage in subtidal and intertidal algae when the algae were subjected to hyposaline conditions. Our data suggest that the oxidative‐stress‐induced cleavage of DMSP affords products with efficient H2O2‐scavenging abilities. In addition, U. lactuca individuals growing in intertidal habitats are better acclimatized to changing environments and thus have a higher threshold for oxidative stress than conspecifics in subtidal habitats.  相似文献   

15.
Recruitment is often important in structuring patterns of distribution and abundance of algal assemblages. Intertidal and subtidal turfing algal assemblages consistently vary on small spatial scales (tens of centimetres), and this variability may be due to patterns of recruitment varying on similar spatial scales. The validity of this model was evaluated by testing the hypothesis that the numbers and types of taxa recruiting to turfs would vary at small spatial scales within intertidal and within subtidal habitats. Abundances of algal recruits were estimated on sandstone plates that were placed at a number of spatial scales within intertidal and within subtidal habitats (centimetres to tens of metres). Significant differences in entire assemblages were found only between habitats. This was explained by abundances of individual taxa, which generally varied between intertidal and subtidal habitats or between sites within habitats. Only small proportions of the overall spatial variation (dissimilarity) could be explained at the scale of replicate recruitment plates that were centimetres apart. Results indicate that while recruitment may contribute to differences between intertidal and subtidal habitats, it cannot explain the small-scale spatial variability in established turfing algal assemblages within these habitats. There was some evidence to suggest that recruitment may contribute to variability in established turfing algal assemblages but only over longer time scales than examined here.  相似文献   

16.
Populations of two rhizomatous species, Asarum europaeum (asarabacca) and Maianthemum bifolium (May lily), were examined in two, and four forest habitats respectively, in the Roztocze National Park (south-eastern Poland). May lily populations were studied in habitats: the Carpathian beechwood, upland mixed fir forest, subboreal moist mixed coniferous forest and bog-alder forest. Asarabacca was studied in two habitats: beechwood and Scots pine community (an 80-year-old plantation). In both the species studied intra- and inter-populational differences of the size of genets in terms of above- and below-ground parts of individuals as well as the biomass and area occupied were observed. In May lily populations the greatest mean number of shoots per genet was found in the fir forest (11.62±3.29), a value almost twice as great as that in the moist coniferous forest and nearly three times greater than in the bog-alder forest. Total rhizome length was also the greatest in the fir forest (351.9±98.7 cm) followed by moist coniferous forest, beechwood and alder forest habitats. In all populations of May lily a greater part of total dry weight biomass is in below-ground organs. The greatest biomass value of a genet was found in the fir forest (4.275 g), the smallest in the bog-alder forest (0.110 g). All populations differed significantly in terms of leaf area, leaf length (with the exception of fir forest and beechwood habitats where the values were the greatest), and leaf width (excluding moist coniferous and bog-alder forests which had the smallest values). In the case of asarabacca, both the mean number of ramets per genet (3.36±0.45 vs. 2.49±0.20) and total rhizome length (40.3±6.4 cm vs. 21.1±1.8 cm) were greater in the beechwood habitat than in the pine community. In the first population genets had 3–5 times greater the total biomass of those from the pine community. Only genets of the latter had proportionately more dry weight biomass in above-ground parts. It seems to be correlated with greater rhizome dieback and disintegration of genets into smaller units. Both populations were significantly different in terms of all examined parameters of leaves. Genets of both the species studied were found to have their own structure of developmental phases that often differed for shoots and rhizomes.  相似文献   

17.

Background

Enhanced nutrient loading and depletion of consumer populations interact to alter the structure of aquatic plant communities. Nonetheless, variation between adjacent habitats in the relative strength of bottom-up (i.e. nutrients) versus top-down (i.e. grazing) forces as determinants of community structure across broad spatial scales remains unexplored. We experimentally assessed the importance of grazing pressure and nutrient availability on the development of macroalgal assemblages and the maintenance of unoccupied space in habitats differing in physical conditions (i.e. intertidal versus subtidal), across regions of contrasting productivity (oligotrophic coasts of South Australia versus the more productive coasts of Eastern Australia).

Methodology/Principal findings

In Eastern Australia, grazers were effective in maintaining space free of macroalgae in both intertidal and subtidal habitats, irrespective of nutrient levels. Conversely, in South Australia, grazers could not prevent colonization of space by turf-forming macroalgae in subtidal habitats regardless of nutrients levels, yet in intertidal habitats removal of grazers reduced unoccupied space when nutrients were elevated.

Conclusions/Significance

Assessing the effects of eutrophication in coastal waters requires balancing our understanding between local consumer pressure and background oceanographic conditions that affect productivity. This broader-based understanding may assist in reconciling disproportionately large local-scale variation, a characteristic of ecology, with regional scale processes that are often of greater relevance to policy making and tractability to management.  相似文献   

18.
The hypothesis is that plants growing in the intertidal region display developmental and morphological differences from subtidal plants of the same species. Intertidal and subtidal populations of Padina sanctae-crucis Börg. Were compared, emphasizing morphological and developmental features. Plant size in relation to number of reproductive bands, vegetative cell sizes and the rate of spore development were analyzed to evaluate the hypothesis. The results indicate that environmental stress tends to dwarf intertidal plants through reduction in cell size. Spores from both intertidal and subtidal populations were cultured in the laboratory under standard conditions. No significant differences were found between the growth rates. The results may be interpreted to mean that cell enlargement is inhibited by intertidal stress.  相似文献   

19.
The Pacific oyster Crassostrea gigas was first introduced as an exotic species by oyster farmers in 1964 in the Oosterschelde estuary (SW Netherlands). The initial phase is not well documented but first natural spatfall was recorded in 1975. Excessive spatfall occurred in 1976 and this is considered the start of the expansion phase of the wild oysters. Oyster beds in intertidal and subtidal areas of the Oosterschelde estuary have been growing since. The development in the intertidal area has been reconstructed by using aerial photography, validated by ground truth in 2000–2002. In the subtidal areas extensive oyster beds have been detected by using side scan sonar; on hard substrates along the dikes coverage with oysters up to 90% locally has been recorded by scuba diving surveys. Expansion has also occurred into adjacent water bodies including the Wadden Sea. By forming resistant reefs the oysters induce structural changes in the ecosystem. It is concluded that bed area is still expanding while decrease of the fraction live animals may indicate adjustment of the stock size to the local conditions.  相似文献   

20.
Newly settled or hatched juveniles of marine benthic invertebratesgenerally experience very high mortality. Juvenile mortalitycan profoundly affect adult populations, but little is knownabout how individual variation in juvenile quality affects performance.Several recent studies have demonstrated that differences insize, larval nutrient stores, or larval feeding history canstrongly affect the performance (measured as growth and survivorship)of juveniles. Additional research suggests that the strengthof the effect of juvenile size on performance may be mediatedby variation in environmental stress in the intertidal, a habitatcharacterized by strong fluctuations in abiotic factors. Themajor sources of juvenile snail mortality are likely to differin intertidal and subtidal habitats; abiotic stresses relatedto exposure, such as desiccation, are important in the intertidalbut far less severe in subtidal environments. Previously observedtrends in hatching or settlement size between intertidal andsubtidal species from three gastropod taxa may be due to differingselective regimes acting on initial juvenile size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号