首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between TCR and self-peptide/MHC complex play an important role in homeostasis and Ag reactivity of mature peripheral T cells. In this report, we demonstrate that the interactions between mature peripheral T cells and endogenous Ags have a negative impact on the maintenance of foreign Ag-specific T cells in an age-dependent manner. This is mediated by RAG-dependent secondary rearrangement of the TCR alpha-chain (receptor revision). The TCR revision in mature T cells is readily observed in mouse expressing transgenic TCR alpha-chain inserted into the physiological locus (knockin mouse) but not in conventional transgenic mouse with an identical TCR alpha-chain. Thus, our results suggest that under physiological conditions in which all TCR alpha-chains are susceptible to deletion by secondary rearrangement, TCR revision in mature peripheral T cells is an ongoing process in adult animals and contributes to age-dependent changes in T cell function and repertoire.  相似文献   

2.
T cell receptor revision does not solely target recent thymic emigrants   总被引:14,自引:0,他引:14  
CD4(+)Vbeta5(+) T cells enter one of two tolerance pathways after recognizing a peripherally expressed superantigen encoded by an endogenous retrovirus. One pathway leads to deletion, while the other, termed TCR revision, results in cellular rescue upon expression of an alternate TCR that no longer recognizes the tolerogen. TCR revision requires the rearrangement of novel TCR beta-chain genes and depends on recombinase-activating gene (RAG) expression in peripheral T cells. In line with recent findings that RAG(+) splenic B cells are immature cells that have maintained RAG expression, it has been hypothesized that TCR revision is limited to recent thymic emigrants that have maintained RAG expression and TCR loci in a recombination-permissive configuration. Using mice in which the expression of green fluorescent protein is driven by the RAG2 promoter, we now show that in vitro stimulation can drive reporter expression in noncycling, mature, peripheral CD4(+) T cells. In addition, thymectomized Vbeta5 transgenic RAG reporter mice are used to demonstrate that TCR revision can target peripheral T cells up to 2 mo after thymectomy. Both sets of experiments strongly suggest that reinduction of RAG genes triggers TCR revision. Approximately 3% of CD4(+)Vbeta5(+) T cells in thymectomized Vbeta5 transgenic reporter mice have undergone TCR revision within the previous 4-5 days. TCR revision can also occur in Vbeta5(+) T cells from nontransgenic mice, illustrating the relevance of this novel tolerance mechanism in unmanipulated animals.  相似文献   

3.
Phenotypic allelic exclusion at the TCRalpha locus is developmentally regulated in thymocytes. Many immature thymocytes express two cell surface alpha-chain species. Following positive selection, the vast majority of mature thymocytes and peripheral T cells display a single cell surface alpha-chain. A posttranslational mechanism occurring at the same time as positive selection and TCR up-regulation leads to this phenotypic allelic exclusion. Different models have been proposed to explain the posttranslational regulation of the alpha-chain allelic exclusion. In this study, we report that allelic exclusion is not regulated by competition between distinct alpha-chains for a single beta-chain, as proposed by the dueling alpha-chain model, nor by limiting CD3 zeta-chain in mature TCR(high) thymocytes. Our data instead favor the selective retention model where the positive selection signal through the TCR leads to phenotypic allelic exclusion by specifically maintaining cell surface expression of the selected alpha-chain while the nonselected alpha-chain is internalized. The use of inhibitors specific for Lck and/or other Src kinases indicates a role for these protein tyrosine kinases in the signaling events leading to the down-regulation of the nonselectable alpha-chain. Loss of the ubiquitin ligase/TCR signaling adapter molecule c-Cbl, which is important in TCR down-modulation and is a negative regulator of T cell signaling, leads to increased dual alpha-chain expression on the cell surface of double-positive thymocytes. Thus, not only is there an important role for TCR signaling in causing alpha-chain allelic exclusion, but differential ubiquitination by c-Cbl may be an important factor in causing only the nonselected alpha-chain to be down-modulated.  相似文献   

4.
Most, but not all, V beta 8.1+ T cells respond to M1s-1 and are clonally deleted in the thymus of M1s-1-expressing animals. To formally examine the role of the TCR alpha-chain in reactivity and tolerance to M1s-1, we have analyzed M1s-1 reactivity in a large panel of CD4+ hybridomas generated from TCR V beta 8.1 transgenic mice, that express an identical, potentially M1s-1-reactive beta-chain. The data show that the alpha-chain strongly influences the M1s-1 reactivity of the hybridomas and that the differences in reactivity had relevance for tolerance. Thus, V alpha 11+ hybridiomas were biased toward M1s-1 reactivity and V alpha 11+ T cells were correspondingly absent from the peripheral repertoire of M1s-1-expressing transgenic mice. V alpha 2+ hybridomas, on the other hand, were biased against M1s-1 reactivity, and V alpha 2+ T cells were correspondingly amplified in the M1s-1-expressing transgenic mice. Structural analysis of the alpha-chains revealed that the M1s-1 reactivity of the V alpha 11+ hybridomas segregated precisely with family member, such that V alpha 11.1+ hybridomas were M1s-1-reactive and V alpha 11.3+ hybridomas were not M1s-1-reactive. On the other hand, there was not a clear correlation between family member and M1s-1 reactivity in the V alpha 2+ hybridomas. The hybridomas also showed striking variation in their reactivity to staphylococcal enterotoxin B (SEB), and the SEB reactivity of the V alpha 11+ hybridomas correlated precisely with family member and with M1s-1 reactivity. In contrast, there was not a clear correlation with V alpha 2+ alpha-chain structure and SEB reactivity. Also, there was no correlation between M1s-1 reactivity and SEB reactivity in individual V alpha 2+ hybridomas, suggesting that the recognition of the two superantigens by the same TCR is not equivalent. Taken together, these data define a role for the TCR alpha-chain in superantigen reactivity and T cell tolerance, and provide a structural explanation for the different fates of M1s-1-reactive T cells in normal and transgenic mice.  相似文献   

5.
CD4(+) T cells respond to peripheral endogenous superantigen stimulation by undergoing deletion or TCR revision. The latter involves RAG re-expression, TCR gene rearrangement, and expression of a novel TCR. TCR-revised T cells are functional and express a diverse TCR repertoire. Because TCR revision harbors the potential to create self-reactivity, it is important to explore whether T cells known to be self-reactive (regulatory T cells) or those involved in autoimmunity (Th17 cells) arise from TCR revision. Interestingly, we observed that Foxp3(+) cells are excluded from revising their TCR and that only a small fraction of postrevision cells expresses Foxp3. In contrast, Th17 cells are 20 times more frequent among revised than among C57BL/6 CD4(+) T cells, indicating that postrevision cells are biased toward the Th17 lineage. The link between Th17 differentiation and TCR revision might be highly relevant to the role of Th17 cells in promoting autoimmunity.  相似文献   

6.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

7.
CD4(+)Vβ5(+) peripheral T cells in C57BL/6 mice respond to encounter with a peripherally expressed endogenous superantigen by undergoing either deletion or TCR revision. In this latter process, cells lose surface Vβ5 expression and undergo RAG-dependent rearrangement of endogenous TCRβ genes, driving surface expression of novel TCRs. Although postrevision CD4(+)Vβ5(-)TCRβ(+) T cells accumulate with age in Vβ5 transgenic mice and bear a diverse TCR Vβ repertoire, it is unknown whether they respond to homeostatic and antigenic stimuli and thus may benefit the host. We demonstrate in this study that postrevision cells are functional. These cells have a high rate of steady-state homeostatic proliferation in situ, and they undergo extensive MHC class II-dependent lymphopenia-induced proliferation. Importantly, postrevision cells do not proliferate in response to the tolerizing superantigen, implicating TCR revision as a mechanism of tolerance induction and demonstrating that TCR-dependent activation of postrevision cells is not driven by the transgene-encoded receptor. Postrevision cells proliferate extensively to commensal bacterial Ags and can generate I-A(b)-restricted responses to Ag by producing IFN-γ following Listeria monocytogenes challenge. These data show that rescued postrevision T cells are responsive to homeostatic signals and recognize self- and foreign peptides in the context of self-MHC and are thus useful to the host.  相似文献   

8.
9.
The ADAP-SKAP-55 module regulates T-cell receptor (TCR)-induced integrin clustering and adhesion in T cells. However, it has been unclear whether ADAP and/or SKAP-55 is an effector of the response. ADAP controls SKAP-55 expression such that ADAP(-/-) T cells are also deficient in SKAP-55 expression. In this study, we report the phenotype of the SKAP-55-deficient mouse. SKAP-55(-/-) T cells retain ADAP expression yet show defects in beta1 and beta2 integrin adhesion, leukocyte function-associated antigen 1 (LFA-1) clustering, production of the cytokines interleukin-2 and gamma interferon, and proliferation. This dependency was also reflected in more-transient conjugation times in response to the superantigen staphylococcal enterotoxin A on dendritic cells and a reduced number of cells with TCR/CD3 microcluster localization at the immunological synapse. SKAP-55(-/-) T cells showed the same general impairment of function as ADAP(-/-) T cells, indicating that SKAP-55 is an effector of the ADAP-SKAP-55 module. At the same time, the requirement for ADAP and SKAP-55 was not absolute, since a subset of peripheral T cells adhered with loss of expression of either adaptor. Further, dependency on SKAP-55 or ADAP differed with the strength of the TCR signal. As with the ADAP(-/-) mouse, SKAP-55-deficient mice showed no major effects on lymphoid development or the appearance of peripheral T cells, B cells, and NK cells. Our findings identify a clear effector role for SKAP-55 in LFA-1 adhesion in peripheral T cells and demonstrate that dependency on SKAP-55 and ADAP differs among T cells and differs with the strength of the TCR signal.  相似文献   

10.
The molecular mechanisms ensuring the ordered expression of TCR genes are critical for proper T cell development. The mouse TCR alpha-chain gene locus contains a cis-acting locus control region (LCR) that has been shown to direct integration site-independent, lymphoid organ-specific expression of transgenes in vivo. However, the fine cell type specificity and developmental timing of TCRalpha LCR activity are both still unknown. To address these questions, we established a transgenic reporter model of TCRalpha LCR function that allows for analysis of LCR activity in individual cells by the use of flow cytometry. In this study we report the activation of TCRalpha LCR activity at the CD4-CD8-CD25-CD44- stage of thymocyte development that coincides with the onset of endogenous TCRalpha gene rearrangement and expression. Surprisingly, TCRalpha LCR activity appears to decrease in peripheral T cells where TCRalpha mRNA is normally up-regulated. Furthermore, LCR-linked transgene activity is evident in gammadelta T cells and B cells. These data show that the LCR has all the elements required to reliably reproduce a developmentally correct TCRalpha-like expression pattern during thymic development and unexpectedly indicate that separate gene regulatory mechanisms are acting on the TCRalpha gene in peripheral T cells to ensure its high level and fine cell type-specific expression.  相似文献   

11.
A TCR heterodimer composed of a TCR gamma-chain and a TCR delta-chain was found to be expressed in association with CD3 by a small population of human peripheral blood T cells, thymocytes, and certain leukemic T cell lines. The leukemic T cell lines PEER and Lyon-1 express such a TCR-gamma delta/CD3 complex at the cell surface. In addition, PEER and Lyon-1 cells transcribe a productively rearranged TCR-beta gene. Introduction of TCR alpha-chain cDNA of human or murine origin resulted in cell surface expression of a TCR-alpha beta/CD3 complex on PEER and Lyon-1 cells. The expression of the TCR-gamma delta/CD3 complex on PEER cells was not affected by introduction of TCR-alpha cDNA. In contrast, introduction of a TCR-alpha cDNA and expression of the TCR-alpha beta/CD3 complex in Lyon-1 cells resulted in the disappearance of the TCR-gamma delta/CD3 complex. These data were confirmed by indirect immunofluorescence, at the protein level and by gene expression analysis. Triggering of the TCR-alpha beta/CD3 complexes by anti-CD3 mAb or anti-TCR mAb resulted in increased internal Ca2+ levels, indicating that these receptors were functional in signal transduction. These results indicate that, besides TCR gene rearrangements, membrane expression of TCR-alpha beta heterodimers may be important in regulating TCR-gamma delta cell surface expression.  相似文献   

12.
Restimulation of Ag receptors on peripheral T lymphocytes induces tyrosine phosphorylation-based signaling cascades that evoke Fas ligand expression and induction of Fas-mediated programmed cell death. In view of the role for the Src homology domain 2-bearing protein tyrosine phosphatase-1 (SHP-1) in modulating TCR signaling, we investigated the influence of SHP-1 on TCR-mediated apoptosis by assaying the sensitivity of peripheral T cells from SHP-1-deficient viable motheaten (mev) mice to cell death following TCR restimulation. The results of these studies revealed mev peripheral T cells to be markedly more sensitive than wild-type cells to induction of cell death following TCR stimulation. By contrast, PMA/ionophore and anti-Fas Ab-induced apoptotic responses were no different in mev compared with wild-type activated cells. Enhanced apoptosis of TCR-restimulated mev lymphocytes was associated with marked increases in Fas ligand expression as compared with wild-type cells, but was almost abrogated in both mev and wild-type cells by Fas-Fc treatment. Thus, the increased sensitivity of mev T cells to apoptosis following TCR restimulation appears to reflect a TCR-driven phenomenon mediated through up-regulation of Fas-Fas ligand interaction and induction of the Fas signaling cascade. These findings, together with the hyperproliferative responses of mev peripheral T cells to initial TCR stimulation, indicate that SHP-1 modulation of TCR signaling translates to the inhibition of both T cell proliferation and activation and, as such, is likely to play a pivotal role in regulating the expansion of Ag-stimulated T cells during an immune response.  相似文献   

13.
Peripheral CD4(+)Vβ5(+) T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of postrevision CD4(+)Vβ5(-) T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the postrevision population. In this study, we investigate the role of Bcl-2-interacting mediator of cell death (Bim)-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim-deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4(+) T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR-expressing cells are TCR revision intermediates and that the population of RAG-expressing, revising CD4(+) T cells is increased in Bim-deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the postrevision repertoire.  相似文献   

14.
We have investigated the expression of the alpha beta and the gamma delta T cell receptor (TCR) in the human intestine. By immunohistology we found that 39% of CD3+ intraepithelial lymphocytes (IEL) expressed the gamma delta TCR compared to 3% of CD3+ lamina propria lymphocytes (LPL). Cytofluorometric analysis of isolated cells revealed a significantly higher proportion of gamma delta T cells among CD3+ IEL compared to LPL and peripheral blood lymphocytes. This was due to an increase in both CD8+ (low density) and CD4-CD8- gamma delta T cells in IEL. Most alpha beta IEL expressed high-density CD8. About 30% of both IEL and LPL expressed CD25 (alpha-chain of the IL-2 receptor). HML-1 expression was detected on nearly all IEL and on 27% of LPL. CD25 and HML-1 were preferentially expressed on intestinal alpha beta and gamma delta T cells, respectively. Thus, human gamma delta T cells are located preferentially in the gut epithelium and are phenotypically different from alpha beta T cells, which constitute the majority of both LPL and IEL.  相似文献   

15.
The pre-T-cell receptor (pre-TCR) has a crucial role in the normal development of alphabeta T cells. Different views have emerged concerning the structure and function of the pre-TCR. This molecular complex can be viewed as a variant of the alphabeta-TCR in which the pre-TCR alpha-chain that is covalently associated with the TCR beta-chain is a 'surrogate' TCR alpha-chain. Alternatively, the unique structure of the pre-TCR might be associated with a unique function, owing to evolutionary selection of a pre-TCR alpha-chain that has different capabilities from the TCR alpha-chain. As described here, I consider that experimental evidence favours the latter view.  相似文献   

16.
Numerous clinical and epidemiological studies link enteroviruses such as the Coxsackie virus group with the autoimmune disease type 1 diabetes mellitus (DM). In addition, there are reports that patients with type 1 DM are characterized by skewing of TCR Vbeta chain selection among peripheral blood and intraislet T lymphocytes. To examine these issues, we analyzed TCR Vbeta chain-specific up-regulation of the early T cell activation marker, CD69, on CD4 T cells after incubation with Coxsackievirus B4 (CVB4) Ags. CD4 T cells bearing the Vbeta chains 2, 7, and 8 were the most frequently activated by CVB4. Up-regulation of CD69 by different TCR families was significantly more frequent in new onset type 1 DM patients (p = 0.04), 100% of whom (n = 8) showed activation of CD4 T cells bearing Vbeta8, compared with 50% of control subjects (n = 8; p = 0.04). T cell proliferation after incubation with CVB4 Ags required live, nonfixed APCs, suggesting that the selective expansion of CD4 T cells with particular Vbeta chains resulted from conventional antigen processing and presentation rather than superantigen activity. Heteroduplex analysis of TCR Vbeta chain usage after CVB4 stimulation indicated a relatively polyclonal, rather than oligo- or monoclonal response to viral Ags. These results provide evidence that new-onset patients with type 1 DM and healthy controls are primed against CVB4, and that CD4 T cell responses to the virus have a selective TCR Vbeta chain usage which is driven by viral Ags rather than a superantigen.  相似文献   

17.
18.
Mouse CD4(+)Vbeta5(+) T cells recognize a peripherally expressed superantigen encoded by an endogenous retrovirus. Ag encounter tolerizes the mature CD4 T cell compartment, either by deletion of autoreactive cells or by TCR revision. This latter process is driven by TCRbeta rearrangement through RAG activity and results in the rescue of cells expressing novel TCRs that no longer recognize the tolerogen. Consistent with the notion that revising T cells represent a distinct peripheral T cell population, we now show that these lymphocyte blasts express a hybrid effector/memory phenotype and are not undergoing cell division. A population of revising T cells is CD40(+), expresses the germinal center (GC) marker CXCR5, and is Vbeta5(low)Thy-1(low). Histology reveals that, consistent with their surface Ag phenotype, T cells undergoing TCR revision are enriched in splenic GCs. These data demonstrate that TCR revision is a multistep tolerance pathway supported by the unique microenvironment provided by GCs.  相似文献   

19.
Stimulation of T cells by superantigens has been reported to be dependent on the presence of APC where binding to class II molecules is a prerequisite to recognition by the TCR. We examined the response of human T cells and a leukemic T cell line, Jurkat to the superantigen, streptococcal M protein. We show that immobilized or cross-linked streptococcal M protein stimulates Jurkat cells (V beta 8), but not normal purified human T cells, to produce IL-2. Activation of purified T cells by this superantigen required costimulatory signals provided by PMA, IL-1, and IL-6. These cytokines and growth factors alone can induce IL-2 production by T cells; however, proliferation occurred only in the presence of superantigen, which together with PMA, IL-1, and IL-6 induced the expression of IL-2R alpha on T cells. Similar results were obtained when the response of purified T cells to another known superantigen, staphylococcal enterotoxin B were examined, indicating that this phenomenon is not unique to M protein. Superantigens interact with a large number of T cells with particular V beta, and thus provide excellent models for studies of the role of biochemical events and signal transduction in T cell activation. Understanding these events may also explain the pathogenesis of autoimmune diseases associated with certain superantigens, such as streptococcal M protein that is thought to be involved in rheumatic fever and rheumatic heart disease.  相似文献   

20.
In a recent study, a superantigen mutated in the TCR binding site (staphylococcal enterotoxin B (SEB)delta61Y) was described, which behaved as a partial agonist for a Vbeta17-expressing T-cell clone. Evidence is now presented to demonstrate that there is distinct heterogeneity in the response of primary T cells to this protein. Some Vbeta17 T cells responded to SEBdelta61Y by modulating surface receptor expression consistent with activation, and by proliferating. Other Vbeta17 T cells did not proliferate, nor did they display a receptor expression phenotype consistent with activation. However, when repeatedly exposed to the altered superantigen, some of these non-responders entered cell cycle. This pattern of responses was not recapitulated by providing additional costimulation via CD28, although such treatment did induce some of the 'unresponsive' Vbeta17 T cells to upregulate the IL-2 receptor, indicative of partial activation. It was also found that the heterogeneous pattern could be replicated using very low doses of native SEB. The data are discussed in the context of models of T-cell activation in which differences in TCR ligand affinity and dose determine qualitatively different response phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号