首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of blue light (B) on stem extension-growth were compared in light-grown seedlings, of tobacco overexpressing Avena phytochrome A and its isogenic wild type (WT). Under natural radiation, lowering the levels of B reaching the whole shoot promoted stem extension growth in WT but not in transgenic seedlings. Under controlled conditions, the seedlings were exposed to white light (WL) or WL minus B, each one provided at two different irradiances. In WT seedlings stem extension growth was promoted by lowering B at both irradiance levels. In transgenic seedlings a reduction of B was promotive only at low irradiance levels. The seedlings were also grown under WL, WL minus B, WL minus red light (R) and far-red light (FR) or WL minus R, FR and B. In the WT, lowering B promoted stem extension growth irrespective of R+FR levels. In the transgenics, B was effective only at very low levels of R+FR (i.e. at low phytochrome cycling rates). Lowering the Pfr levels at the end of the day promoted extension growth in wild type and transgenic seedlings. Responses to B were not observed in transgenic seedlings having low Pfr levels at the end of the day. The results suggest that the overexpressed phytochrome A acts mainly via irradiance-dependent reactions. When these reactions are highly expressed, B responses are not observed.  相似文献   

2.
Young leaves of white clover are subjected to low irradiance and low red to far-red (R:FR) ratio within canopies. The objectives were to investigate the consequences of low R:FR ratio on morphology, net CO2 assimilation and photochemical activity of leaves developed under simulated light environment of canopy. We used far-red (FR) light emitting diodes to modify the R:FR ratio only at the developing leaf under a low irradiance. Net CO2 assimilation rate, stomatal conductance and leaf morphology were not affected by low R:FR ratio. FR exposure slightly reduced the photochemical quantum yield of PSII but there were no consequences on electron flow through photosystem II. The carbon fixation by the leaf was therefore not modified by light quality. However, low R:FR ratio decreased the leaf chlorophyll content by 21 %. Those effects were only attributed to just unfolded leaves as they were not persistent in mature leaves and there were no consequences on plant biomass accumulation.  相似文献   

3.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

4.
Loss of a blue-light photoreceptor in the hy4 mutants of Arabidopsis thaliana (L.) Heynh substantially delayed flowering (>100 d to flower vs. 40–50 d), especially with blue light exposure from lamps lacking much red (R) and/or far-red (FR) light. Red night breaks were promotory but flowering was still later for the hy4-101 mutant. However, with exposure to light from FR-rich lamps, flowering of all mutants was early and no different from the wild type. Thus, flowering of Arabidopsis involves a blue-light photoreceptor and other, often more effective photoreceptors. The latter may involve phytochrome photoresponses to R and FR, but with little or no phytochrome response to blue wavelengths.Abbreviations HIR high irradiance response - FR far-red - R red - WT wild type  相似文献   

5.
Plants growing in the shade receive both low light irradiance and light enriched in far red (FR) (i.e., light with a low red (R) to FR ratio). In an attempt to uncouple the R/FR ratio effects from light irradiance effects, we utilized Stellaria longipes because this species has two distinct natural population ecotypes, alpine (dwarf) and prairie (tall). The alpine population occupies the open, sun habitat. By contrast, the prairie population grows in the shade of other plants. Both 'sun' and 'shade' ecotypes responded with increased stem elongation responses under low irradiance, relative to growth under 'normal' irradiance, and this increased growth was proportionally similar. However, only the shade ecotype had increased shoot elongation in response to a low R/FR ratio. By contrast, the sun ecotype showed increased stem elongation in response to increasing R/FR ratio. Varying the R/FR ratios had no significant effect on ethylene evolution in either sun or shade ecotype. Under low irradiance, only the sun ecotype showed a significantly changed (decreased) ethylene evolution. We conclude that R/FR ratio and irradiance both regulate growth, and that irradiance can also influence ethylene evolution of the sun ecotype. By contrast, R/FR ratio and irradiance, while having profound influences on growth of the shade ecotype, do not appear to regulate these growth changes via effects on ethylene production.  相似文献   

6.
Plants perceive red (R) and far-red (FR) light signals using the phytochrome family of photoreceptors. In Arabidopsis thaliana, five phytochromes (phyA-phyE) have been identified and characterized. Unlike other family members, phyA is subject to rapid light-induced proteolytic degradation and so accumulates to relatively high levels in dark-grown seedlings. The insensitivity of phyA mutant seedlings to prolonged FR and wild-type appearance in R has led to suggestions that phyA functions predominantly as an FR sensor during the early stages of seedling establishment. The majority of published photomorphogenesis experiments have, however, used <50 micromol m(-2) sec(-1) of R when characterizing phytochrome functions. Here we reveal considerable phyA activity in R at higher (>160 micromol m(-2) sec(-1)) photon irradiances. Under these conditions, plant architecture was observed to be largely regulated by the redundant actions of phytochromes A, B and D. Moreover, quadruple phyBphyCphyDphyE mutants containing only functional phyA displayed R-mediated de-etiolation and survived to flowering. The enhanced activity of phyA in continuous R (Rc) of high photon irradiance correlates with retarded degradation of the endogenous protein in wild-type plants and prolonged epifluorescence of nuclear-localized phyA:YFP in transgenic lines. Such observations suggest irradiance-dependent 'photoprotection' of nuclear phyA in R, providing a possible explanation for the increased activity observed. The discovery that phyA can function as an effective irradiance sensor, even in light environments that establish a high Pfr concentration, raises the possibility that phyA may contribute significantly to the regulation of growth and development in daylight-grown plants.  相似文献   

7.
Germination responses to light were studied in the upper andlower seeds of cocklebur (Xanthium pennsylvanicum Wallr.). Thelower seed was dark-germinating and negatively photoblastic;the upper one had a red-light (R) requirement and was positivelyphotoblastic. Germination of the lower seeds was inhibited bya prolonged single irradiation with R, blue (B) or far-red (FR)light applied during imbibition. The maximal inhibitory effectof a single irradiation occurred 9 h and 13 h after the startof soaking at 33 °C and 23 °C, respectively. However,the inhibitory effect of R differed from that of B and FR, byonly delaying germination. A single exposure to B or FR lightcould be replaced by intermittent B or FR irradiation, and theireffects were repeatedly reversible by the following R irradiation.If the upper seeds were not exposed to R during imbibition,they failed to germinate even at 33 °C which was optimalfor germination, and the promotive effect of R increased withdelay of its application time. The photoperceptive locus incocklebur seeds was the axial tissue for all B, R and FR. Lightreceived by the cotyledonary tissue had little effect. Germinationdimorphism in response to light is discussed with respect tothe phytochrome content and the ageing of axial tissues. Key words: Blue light, Dimorphism, Far red light, Germination, Red light, Xanthium seed  相似文献   

8.
Sunflower (Helianthus annuus L.) stems showed increased elongation under two types of vegetative shade: canopy shade (low red to far red [R/FR] ratio) and neighbouring proximity shade (FR enrichment). Hypocotyls also elongated more under narrow-band FR light than under narrow-band R light. Ethylene levels were determined in actively elongating 7-day-old hypocotyls and 17-day-old internodes under three R/FR ratios. Ethylene levels were lower in both sunflower hypocotyls and internodes when the R/FR ratio was reduced. Both FR enrichment of normal R/FR ratio and narrow-band FR light with very low light irradiance resulted in reduction in ethylene levels in 7-day-old hypocotyls. Further, in application experiments, sunflower stems grown under low R/FR ratio were more sensitive to ethephon and less sensitive to aminoethoxyvinylglycine (AVG) than stems grown under high R/FR ratio. Low R/FR ratio appears to initiate reduction in ethylene levels in sunflower seedlings, allowing maximum stem elongation. These results, and findings of other authors, suggest that various plant species may have developed different ways of regulating stem elongation and ethylene levels in response to low R/FR ratio.  相似文献   

9.
Seedlings of trees with a free growth pattern cease growth when night-lengths become shorter than a critical value, and this critical night-length (CNL) decreases with increasing latitude of origin. In northern populations, the light quality also appears to play an important role and a clinal variation in requirement for far-red (FR) light has been documented. In this study we dissected the light quality requirements for maintaining growth in different latitudinal populations of Norway spruce (Picea abies (L.) H. Karst.) using light emitting diodes for red (R), FR and blue (B) light, as 12 h day extension to provide 24 h photoperiod. At equal spectral photon flux, FR light was more effective than R light in maintaining growth, and the requirement of both R and FR increased with northern latitude of origin. One-to-one mixtures of R and FR light were more effective in maintaining growth than either FR or R light alone, indicating a possible interaction between R and FR light maintaining growth. Using the blue light as day extension could not prevent growth cessation in any of the populations, but delayed the bud set slightly in all populations. Our results suggest that phytochrome(s) are the primary photoreceptors in high irradiance responses maintaining growth in Norway spruce seedlings.  相似文献   

10.
The natural variation in quantity and quality of light modifies plant morphology, growth rate and concentration of biochemicals. The aim of two growth‐room experiments was to study the combined effects of red (R) and far‐red (FR) light and ultraviolet‐B (UV‐B) radiation on the concentrations of leaf phenolics and growth and morphology of silver birch (Betula pendula Roth) seedlings. Analysis by high‐performance liquid chromatography showed that the leaves exposed to supplemental FR relative to R contained higher concentrations of total chlorogenic acids and a cinnamic acid derivative than the leaves treated with supplemental R relative to FR. In contrast, concentration of a flavonoid, quercetin 3‐galactoside, was higher in the R + UV‐B leaves than in the FR + UV‐B leaves. The UV‐B induced production of kaempferols, chlorogenic acids and most quercetins were not modified by the R : FR ratio. Growth measurements showed that the leaf petioles and stems of FR seedlings were clearly longer than those of R seedlings, but leaf area was reduced by UV‐B radiation. Results of these experiments show that exposure of silver birch seedlings to supplemental FR compared to R leads to fast elongation growth and accumulation of phenolic acids in the leaves.  相似文献   

11.
Summary After inhibition of Nemophila insignis seeds by far-red (FR) light, a short exposure to blue (Bl) will not induce germination again but stimulation by red (R), with reversion by FR, can be observed. Germination is inhibited by long exposures to Bl (maxima at 455 and 475 nm). These radiations are absorbed either directly by phytochrome or through intermediary pigments such as flavoproteins.Abbreviations Bl blue - FR far-red - R red  相似文献   

12.
Forest understory plants often respond less intensely to reduced ratios of red to far red (R : FR) light, an important signal of foliage shade, than conspecific or congeneric plants from open-canopy sites. Reduced responsiveness to low R : FR in plants from closed-canopy sites could be caused by two physiological mechanisms. First, closed-canopy plants could have less sensitive shade-avoidance responses to low R : FR. Second, the high irradiance response to FR (FR-HIR), which allows seedling de-etiolation under low R : FR, might be stronger or persist longer after de-etiolation in closed-canopy plants, thus counteracting shade-avoidance responses to low R : FR. These hypotheses were tested using diodes that emit red and far-red light to distinguish the responses to altered R : FR of genotypes of Impatiens capensis collected from a pair of open- and closed-canopy populations that have previously been shown to differ in sensitivity to R : FR. Genotypes from the open-canopy environment exhibited typical shade-avoidance responses, elongating in response to supplemental FR. However, genotypes from the closed-canopy environment responded to supplemental FR by elongating less than under ambient control conditions, indicating a persistent FR-HIR. Thus, the observed population differentiation in response to low R : FR may be linked to population differences in FR-HIR.  相似文献   

13.
We investigated the response to increasing intensity of red (R) and far‐R (FR) light and to a decrease in R:FR ratio in Pinus sylvestris L. (Scots pine) seedling. The results showed that FR high‐irradiance response for hypocotyl elongation may be present in Scots pine and that this response is enhanced by increasing light intensity. However, both hypocotyl inhibition and pigment accumulation were more strongly affected by the R light compared with FR light. This is in contrast to previous reports in Arabidopsis thaliana (L.) Heynh. In the angiosperm, A. thaliana R light shows an overall milder effect on inhibition of hypocotyl elongation and on pigment biosynthesis compared with FR suggesting conifers and angiosperms respond very differently to the different light regimes. Scots pine shade avoidance syndrome with longer hypocotyls, shorter cotyledons and lower chlorophyll content in response to shade conditions resembles the response observed in A. thaliana. However, anthocyanin accumulation increased with shade in Scots pine, which again differs from what is known in angiosperms. Overall, the response of seedling development and physiology to R and FR light in Scots pine indicates that the regulatory mechanism for light response may differ between gymnosperms and angiosperms.  相似文献   

14.
Variation in vegetation density creates a range of red to far-red ratios of irradiance (R:FR) potentially permitting fine-scale discrimination of light conditions for seed germination. However, remarkably few studies have explored whether R:FR responses of germination vary among species that differ in distribution and life-history traits. In this study, we explored the relationships between R:FR requirements and four species characteristics: seed mass, latitudinal distribution (tropical vs. temperate), seed dormancy (dormant vs. nondormant), and plant growth form (woody vs. nonwoody). We obtained data on germination response to R:FR of 62 species from published literature and added new data for ten species from aseasonal tropical forests in Borneo. First, we analyzed whether species characteristics influenced overall light dependency of germination using phylogenetic logistic regression. We found that seed mass had a strong negative effect on light dependency, but that the seed mass at which tropical taxa had a 50 % probability of light dependency was 40 times that of temperate taxa. For light-dependent species, we found that the threshold R:FR that stimulates 50 % of maximum germination (R:FR50) was also related to seed mass and latitudinal distribution. In agreement with an earlier study, we found that for temperate taxa, the R:FR50 was significantly negatively correlated with seed mass. In contrast, for 22 tropical taxa, we found a significant positive correlation. These opposing relationships suggest contrasting selection pressures on germination responses of tropical taxa (mostly trees) and temperate herbaceous plants, and which are likely related to differences in seed longevity, seed burial rates, and reproductive output.  相似文献   

15.
A reduced red to far-red (R/FR) light ratio and low photosynthetically active radiation (PAR) irradiance are both strong signals for inducing etiolation growth of plant stems. Under natural field conditions, plants can be exposed to either a reduced R/FR ratio or lower PAR, or to a combination of both. We used Helianthus annuus L., the sunflower, to study the effect of reduced R/FR ratio, low PAR or their combination on hypocotyl elongation. To accomplish this, we attempted to uncouple light quality from light irradiance as factors controlling hypocotyl elongation. We measured alterations in the levels of endogenous gibberellins (GAs), cytokinins (CKs) and the auxin indole-3-acetic acid (IAA), and the effect of exogenous hormones on hypocotyl growth. As expected, both reduced R/FR ratio and lower PAR can significantly promote sunflower hypocotyl elongation when given separately. However, providing the reduced R/FR ratio at a low PAR resulted in the greatest hypocotyl growth, and this was accompanied by significantly higher levels of endogenous IAA, GA1, GA8, GA20 and of a wide range of CKs. Providing a reduced R/FR ratio under normal PAR also significantly increased growth and again gave significantly higher levels of endogenous IAA, GAs and CKs. However, only under the de-etiolating influence of a normal R/FR ratio did lowering PAR significantly increase levels of GA1, GA8 and GA20. We thus conclude that light quality (e.g. the R/FR ratio) is the most important component of shade for controlling hypocotyl growth and elevated growth hormone content.  相似文献   

16.
The developmental responses of plants to shade underneath foliage are influenced by reductions in irradiance and shifts in spectral quality (characterized by reductions in the quantum ratio of red to far-red wavelengths, R:FR). Previous research on the influence of shadelight on leaf development has neglected the reductions in R:FR characteristic of foliage shade, and these studies have almost certainly underestimated the extent and array of developmental responses to foliage shade. We have studied the effects of reduced irradiance and R:FR on the leaf development of papaya (Carica papaya L., Caricaceae). Using experimental shadehouses, replicates of plants grown in high light conditions (0.20 of sunlight and R:FR = 0.90) were compared to low light conditions (0.02 of sunlight) with either the spectral quality of sunlight (R:FR = 0.99) or of foliage shade (F:FR = 0.26). Although many characteristics, such as leaf thickness, specific leaf weight, stomatal density, palisade parenchyma cell shape, and the ratio of mesophyll air surface/leaf surface were affected by reductions in irradiance, reduced R:FR contributed to further changes. Some characters, such as reduced chlorophyll a/b ratios, reduced lobing, and greater internode length, were affected primarily by low R:FR. The reduced R:FR of foliage shade, presumably affecting phytochrome equilibrium, strongly influences the morphology and anatomy of papaya leaves.  相似文献   

17.
The long-day plant Arabidopsis thaliana (L.) Heynh. flowers early in response to brief end-of-day (EOD) exposures to far-red light (FR) following a fluorescent short day of 8 h. FR promotion of flowering was nullified by subsequent brief red light (R) EOD exposure, indicating phytochrome involvement. The EOD response to R or FR is a robust measure of phytochrome action. Along with their wild-type (WT) parents, mutants deficient in either phytochrome A or B responded similarly to the EOD treatments. Thus, neither phytochrome A nor B exclusively regulated flowering, although phytochrome B controlled hypocotyl elongation. Perhaps a third phytochrome species is important for the EOD responses of the mutants and/or their flowering is regulated by the amount of the FR-absorbing form of phytochrome, irrespective of the phytochrome species. Overexpression of phytochrome A or phytochrome B resulted in differing photoperiod and EOD responses among the genotypes. The day-neutral overexpressor of phytochrome A had an EOD response similar to all of the mutants and WTs, whereas R EOD exposure promoted flowering in the overexpressor of phytochrome B and FR EOD exposure inhibited this promotion. The comparisons between relative flowering times and leaf numbers at flowering of the over-expressors and their WTs were not consistent across photoperiods and light treatments, although both phytochromes A and B contributed to regulating flowering of the transgenic plants.  相似文献   

18.
It is often suggested that traits will be integrated, either because of pleiotropy or because natural selection may favor suites of integrated traits. Plant responses to different environments can provide evidence of such integration. We grew Mercurialis annua plants in high-density stands in high irradiance, in neutral shade, and in high red to far-red (R:FR) shade, resulting in environments of high irradiance, low R:FR; low irradiance, low R:FR; and low irradiance, high R:FR. We measured gas exchange, leaf morphology, stem elongation, and biomass traits and tested the prediction that traits within each functional group would show higher trait integration, as evidenced by high correlations among traits within environments, higher correlations of trait plasticity, and lower plasticity of trait correlations. Overall, we found evidence of only moderate integration for some groups of traits. Functionally related groups of traits, or pairs of traits, could be strongly integrated by one criterion but weakly integrated by another of the criteria. Stem elongation traits, though often observed to be strongly integrated in other taxa, showed little evidence of integration. Internode traits exhibited a novel pattern of responses to low R:FR, with increased elongation of the hypocotyl, decreased elongation of the first internode, and no change in the second internode. We propose that these responses to light are more likely to be the result of natural selection than the consequence of constraints imposed by pleiotropy.  相似文献   

19.
In etiolated seedlings of Raphanus sativus L. the inhibition of hypocotyl elongation by continuous light showed a major bimodal peak of action in the red and far-red, and two minor peaks in the blue regions of the spectrum. It is argued that, under conditions of prolonged irradiation, phytochrome is the pigment controlling the inhibition of hypocotyl elongation by red and far-red light, but that its mode of action in far-red is different from that in red. A distinct pigment is postulated for blue light.Abbreviations B blue - FR far red - G green - R red - HIR high irradiance reaction - Pr and Pfr red and far red absorbing forms of phytochrome - R red  相似文献   

20.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号