共查询到20条相似文献,搜索用时 15 毫秒
1.
Muhammad Farooq Abdul Wahid Dong-Jin Lee Osamu Ito Kadambot H. M. Siddique 《植物科学评论》2009,28(4):199-217
Water deficit is a serious environmental stress and the major constraint to rice productivity. Losses in rice yield due to water shortage probably exceed losses from all other causes combined and the extent of the yield loss depends on both the severity and duration of the water stress. Drought affects rice at morphological, physiological, and molecular levels such as delayed flowering, reduced dry matter accumulation and partitioning, and decreased photosynthetic capacity as a result of stomatal closure, metabolic limitations, and oxidative damage to chloroplasts. Small-statured rice plants with reduced leaf area and short growth duration are better able to tolerate drought stress, although the mechanisms are not yet fully understood. Increased water uptake by developing larger and deeper root systems, and the accumulation of osmolytes and osmoprotectants are other important mechanisms for drought resistance. Drought resistance in rice has been improved by using plant growth regulators and osmoprotectants. In addition, several enzymes have been found that act as antioxidants. Silicon has also improved drought resistance in rice by silicification of the root endodermis and improving water uptake. Seed priming improves germination and crop stand establishment under drought. Rice plants expressing HVA1, LEA proteins, MAP kinase, DREB and endo-1, 3-glucanase are better able to withstand drought stress. Polyamines and several enzymes act as antioxidants and reduce adverse effects of drought stress in rice. Drought resistance can be managed by developing and selecting drought-tolerant genotypes. Rice breeding and screening may be based on growth duration, root system, photosynthesis traits, stomatal frequency, specific leaf weight, leaf water potential, and yield in target environments. This review discusses recent developments in integrated approaches, such as genetics, breeding and resource management to increase rice yield and reduce water demand for rice production. 相似文献
2.
Resistance to Water Flow in Xylem Vessels 总被引:2,自引:0,他引:2
Experimental data on flow resistances in xylem vessels withdifferent lumen wall surface sculptures are presented. The techniqueinvolved using determinable forces at menisci to pull waterthrough isolated undamaged metaxylem and protoxylem vesselswhich were empty but had water-saturated walls. In the horizontalorientation, the surface tension forces moved the water at velocitiesthat the resisting viscous forces at the vessel walls wouldallow since inertial forces were found negligible. A high speedcamera was used to determine the meniscus translation rates.Vessel diameters as well as average dimensions of the microscopicinternal surface irregularities were measured with respect toaxial position from the inlet. From these, flow resistanceswere determined in terms of dimensionless friction factor, f,as functions of Reynolds number, Re. It was found that, at certain helical ring thicknesses and spacing,resistance to flow was lowest. Deviations from these parametervalues cause dramatic increases in resistance to flow. Resultsare applicable to normal flow in plants, i.e. without meniscipresent. 相似文献
3.
应用植物生长调节剂能显著提高作物的耐旱性,从而提高干旱条件下作物的产量(余叔文等 1978,王保民等 1980,Fletcher等 1984,1985)。多效唑(multieffects triazole;MET)是我国80年代生产的一种植物生长延缓剂,其化学名为(2RS,3RS)-1-(4-氯苯基)-4,4-二甲基-2-(1H-1,2,4-三唑-1-基)戊醇-3,它能显著延缓稻苗生长、促进分蘖、防止稻苗移栽后败苗(王熹等 1988a,b),提高 相似文献
4.
Lamaze, T., Sentenac, H. and Grignon, C. 1987. Orthophosphaterelations of root: NO3effects on orthophosphate influx,accumulation and secretion into the xylem.J. exp. Bot.38: 923934. Orthophosphate (Pi) accumulation by barley (Hordeum vulgareL.) roots was specifically inhibited by NO3 as comparedto Cl and SO42 , and Pi secretion into the xylemwas stimulated. The inhibition of Pi accumulation by NO3was also observed in roots of intact photosynthesizing horsebean(Vicia faba L.), rice (Oryza sativa L.) and soybean (Glycinemax L.) plants. NO3 effects on Pi transport by rootswere more thoroughly investigated with corn (Zea mays L.). Theywere due to intracellular NO3. Pi secretion was stillstimulated by NO3 after Pi withdrawal from the absorptionsolution. 32Pi influx decreased during Pi accumulation, supportingthe hypothesis that this ion allosterically regulated its owntransport system by feedback control. This control was modulatedby other anions: the decrease was more pronounced in the presenceof nitrate. Chronologically, the depressive effect of NO3on 32Pi influx appeared after the inhibition of Pi accumulation.Furthermore, under conditions where Pi accumulation was notaffected by NO3, 32Pi influx and Pi secretion into thexylem became insensitive to the presence of nitrate. Our hypothesisis that the stimulative effect of NO3 on Pi secretionand the depressive one on 32Pi influx are the repercussionsof an increase in the Pi cytosolic concentration due to an NO3-induced decrease in Pi uptake by the vacuoles. Key words: Root, orthophosphate fluxes, orthophosphate accumulation, nitrate, ionic interaction 相似文献
5.
为鉴定籼粳稻杂交衍生系的苗期抗旱性,以课题组自育的高代抗逆品系ZD15为母本、籼稻品种IR29为父本,以及杂交衍生的重组自交系群体120份为试验材料,利用PEG-6000对各材料苗期进行干旱胁迫处理,测定根长、根冠比、地上部鲜重、地下部鲜重、地上部干重和地下部干重;利用PEG-6000对各材料芽期进行干旱胁迫处理,测定芽鞘长和芽长。采用主成分分析和隶属函数法对各材料的抗旱性进行综合评价,根据综合抗旱D值可将122份材料分成3类,D值在0.201~0.400之间的有33份,属于不抗旱材料;D值在0.401~0.600之间的有79份,属于中等抗旱材料;D值在0.601~0.800之间的有10份,属于抗旱材料。利用D值进行逐步回归分析,结果表明根长、根冠比、地上部鲜重、地下部鲜重、地上部干重、地下部干重、芽鞘长和芽长8个性状均可作为水稻苗期抗旱性的评价指标。本研究筛选出的抗旱材料,可作为育种中间材料进一步培育,或作为育种资源加以利用,以丰富本区水稻育种的资源库。 相似文献
6.
SHERWIN HEATHER W.; PAMMENTER N. W.; FEBRUARY ED; VANDER WILLIGEN CLARE; FARRANT JILL M. 《Annals of botany》1998,81(4):567-575
Myrothamnus flabellifoliusWelw. is a desiccation-tolerant (resurrection)plant with a woody stem. Xylem vessels are narrow (14 µmmean diameter) and perforation plates are reticulate. This leadsto specific and leaf specific hydraulic conductivities thatare amongst the lowest recorded for angiosperms (ks0.87 kg m-1MPa-1s-1;kl3.28x10-5kg m-1MPa-1s-1, stem diameter 3 mm). Hydraulic conductivitiesdecrease with increasing pressure gradient. Transpiration ratesin well watered plants were moderate to low, generating xylemwater potentials of -1 to -2 MPa. Acoustic emissions indicatedextensive cavitation events that were initiated at xylem waterpotentials of -2 to -3 MPa. The desiccation-tolerant natureof the tissue permits this species to survive this interruptionof the water supply. On rewatering the roots pressures thatwere developed were low (2.4 kPa). However capillary forceswere demonstrated to be adequate to account for the refillingof xylem vessels and re-establishment of hydraulic continuityeven when water was under a tension of -8 kPa. During dehydrationand rehydration cycles stems showed considerable shrinking andswelling. Unusual knob-like structures of unknown chemical compositionwere observed on the outer surface of xylem vessels. These maybe related to the ability of the stem to withstand the mechanicalstresses associated with this shrinkage and swelling.Copyright1998 Annals of Botany Company cavitation, desiccation, hydraulic conductivity, refilling, resurrection plant, root pressure, xylem anatomy,Myrothamnus flabellifolius 相似文献
7.
Campos P. Scotti Ramalho J.C. Lauriano J.A. Silva M.J. do Céu Matos M. 《Photosynthetica》1999,36(1-2):79-87
The effect of drought on plant water relations and photosynthesis of Vigna glabrescens (Vg) and Vigna unguiculata (cvs. 1183,
EPACE-1 and Lagoa), which differ in their drought resistance, was compared. With the increase of drought severity, Vg showed
a more gradual stomatal closure and maintained significantly higher levels of stomatal conductance (gs) and photosynthetic activity (PN) than the other genotypes even when minimum relative water content (RWC) values were observed. Furthermore, Vg was the only
genotype able to accumulate significant amounts of proline already under moderate water deficit, what could explain the lower
osmotic potential (ψs) values observed in these plants. The three V. unguiculata cultivars presented a similar stomatal control under increasing
water deficit. A mesophyllic impairment of photosynthetic capacity (Pmax) was detected for cv. 1183 from the beginning of drought onset (85-75 % RWC) while in the Vg plants the values remained unaffected
along the whole drought period, indicating that PN decrease observed in this genotype is mainly a consequence of stomatal closure. Such Pmax maintenance suggests the existence of a high mesophyllic ability to cope with increasing tissue dehydration in Vg.
This revised version was published online in September 2006 with corrections to the Cover Date. 相似文献
8.
The mechanisms underlying the drought tolerance of Peperomiacarnevalii Steyermark (Piperaceae), a succulent herb growingin the understorey of seasonally dry forests, were examined.Crassulacean acid metabolism (CAM) was studied in the fieldand laboratory, and measurements of water status were made inplants subjected to drought in the greenhouse. Nocturnal acidaccumulation and day and night-time CO2assimilation rates weregreatest in watered plants and decreased in drought. The proportionof CO2recycled through CAM in droughted plants, with nocturnalCO2uptake close to zero, was higher than in watered plants.Maximum quantum yield of chlorophyll fluorescence remained unchangedduring drought, but the PSII quantum yield at the photosyntheticphoton flux density at which the plants were grown was significantlydecreased. Leaf anatomy consists of a chlorophyll-less hydrenchymalocated beneath the upper epidermis, and a two-layered mesophyll.Leaves nearer to the apex are thinner than those nearer to thebase of the shoot. Drought caused a reduction in leaf thicknessdue to shrinkage of the hydrenchyma, but not of the mesophyll.This was associated with the occurrence of a gradient of osmoticpotential between these tissues. Comparison of water loss fromthin leaves of watered and droughted plants, either partly defoliatedat the lower nodes or intact, suggested that water moved fromthe thick to the thin leaves. This process was related to theoccurrence of a gradient of water potential between the thickand the thin leaves. Drought tolerance in P. carnevalii is achievedby the operation of CAM and the occurrence of water movementwithin and between leaves. Copyright 2000 Annals of Botany Company Crassulacean acid metabolism, fluorescence, hydrenchyma, mesophyll, Peperomia carnevalii, water relations 相似文献
9.
6种豆科牧草叶片解剖性状与抗旱性关系研究 总被引:5,自引:0,他引:5
以百脉根、二色胡枝子、黄花苜蓿、紫花苜蓿、野火球和扁蓿豆6种豆科牧草的成熟叶片为材料,采用石蜡制片法和光学显微技术测定了叶片上表皮厚度、叶片下表皮厚度、叶片厚度、维管束直径、栅栏组织厚度、海绵组织厚度、栅海比、叶片栅栏组织结构紧密度和叶片海绵组织结构疏松度等抗旱相关的解剖结构特征参数,并进行统计分析和抗旱性综合评价.结果表明:除栅海比外,6种豆科牧草的其他指标均表现出显著或极显著的种间差异,并以叶片厚度、栅栏组织厚度、海绵组织厚度变化幅度较大;叶片上表皮厚度、叶片下表皮厚度、叶片厚度、栅栏组织厚度和海绵组织厚度之间呈极显著正相关和显著正相关,相关系数在0.84~0.99之间;各解剖结构特征参数的第3个主成分(贮水能力)的特征值为14.52,累计贡献率达95.71%,前3个主因子基本上能概括9个指标的主要信息;6种豆科牧草的综合抗旱能力表现为扁蓿豆>百脉根>黄花苜蓿>二色胡枝子>紫花苜蓿>野火球.可见,所选9个叶片解剖结构性状可以用来有效综合评价豆科牧草的抗旱性. 相似文献
10.
Sitka spruce[Picea sitchensis(Bong.) Carr] seedlings were subjectedto varying degrees of root damage in a growth room, rangingfrom careful transplanting to exposure of the root system toair for up to 3 h. After replanting, transpiration (E), leafwater potential (1) and growth of the shoot and root were measuredand observations made on plant survival. Some plants in the root exposure treatments died 2085days after planting. In plants which eventually died, E wasdepressed directly after treatment, but 1 showed a variableresponse. In some plants 1 decreased from 8·0x 105 to 30 x 105 Pa after only 10 days but in othersthere was little change in 1 for 50 days. In spite of the maintenanceof a high water potential in some of the latter plants for longperiods, no root or shoot growth occurred. In plants which lived, the root damage reduced root and shootgrowth relative to untreated controls, and most treatments stronglydepressed E but had little or no effect on 1. The changes of E and 1 in treated plants suggest that the suppressionof E was often independent of 1 although water stress eventuallydeveloped in some of the severely treated plants. Sitka spruce, Picea sitchensis (Bong.)Carr, water relations, root damage, transpiration, leaf water potential 相似文献
11.
《植物学报(英文版)》2007,49(1)
In a 2-year experiment, 187 genotypes were grown under well-watered and drought stress conditions, imposed at panicle initiation stage. The relationship of genotypic variation in yield under drought conditions to potential yield, heading date and flowering delay, reduction in plant height, and to a drought response index (DRI) was detected. Grain yield under drought stress conditions was associated with yield under well-watered conditions (r= 0.47**, and r= 0.61** during 2 years of tests). The delay of heading date ranged from -1 (no delay) to 24days, and was negatively associated with grain yield(r=-0.40*), spikelet fertility percentage (r=-0.40**), harvest index (r=-0.58**), but positively associated with yield reduction percentage (r= 0.60**). The reduction in plant height was negatively associated with grain yield (r =-0.24**, and r =-0.29**), spikelet fertility percentage (r =-0.23**, and r =-0.21*), harvest index (r =-0.37**, and r = -0.54**), and positively associated with yield reduction percentage (r = 0.58**, and r = 0.58**) in 2003 and 2004, respectively. The DRI of genotypes was strongly associated with grain yield (r = 0.87**, and r= 0.77**), fertility percentage (r= 0.66** and r = 0.54**), harvest index (r=0.67** and r=0.61**), and negatively associated with grain reduction percentage (r=-0.70**, and r=-0.73**)under drought stress. The results indicate that genotypes with drought resistance can be identified by measuring yield potential, delay in flowering, reduction in plant height, or DRI under test environments of well-watered and drought stress. 相似文献
12.
The leaf elongation rate and osmotic pressure at full turgorof wheat (Triticum aestivum L.) and lupin (Lupinus cosentiniiGuss.) were measured in well watered plants, in plants thatwere allowed to dry the soil slowly over 7 d, and in plantsin which the water potential of the leaf xylem was maintainedhigh by applying pressure to the roots during the drying cycle.Maintenance of high xylem water potentials failed to preventa reduction in the rate of leaf elongation as the soil dried,while the osmotic pressure at full turgor and the degree ofosmotic adjustment increased as the soil water content decreased.The rate of leaf elongation was reduced more and the degreeof osmotic adjustment was higher in leaves with high xylem waterpotentials than in those in which leaf xylem potentials wereallowed to decrease as soil water content decreased. Osmoticadjustment was linearly correlated with the reduction in leafelongation rate in both wheat and lupin. Key words: Osmotic adjustment, leaf elongation, turgor regulation 相似文献
13.
以梭梭和白梭梭一年生盆栽幼苗为试材,测定60%(对照)、40%和20%的土壤相对含水量(sRwc)处理20d后两种梭梭同化枝的电导率和含水量,地上和地下部水势,根部木质素、纤维素、半纤维素含量,根肉质化程度和根长度。结果表明:两种梭梭同化枝含水量随着SRWC的下降均保持较高的水平;SRWC为40%和20%时,两种同化枝电导率的变化不显著,且均保持较低的值;两种梭梭地下部与地上部水势差值随土壤含水量的降低而增大;SRWC为40%的土壤条件促进两种梭梭的根系生长,20%的SRWC条件下仍保持与对照一样的水平;不同SRWC条件下,梭梭和白梭梭根部的木质素、纤维素、半纤维素含量的变化幅度均较小,且保持很高的水平,总含量分别为46.9%-53.3%和50.6%-57.6%。由此推断,在干旱胁迫下两种梭梭的根系依赖于较强的根部榆导组织坚韧度,往土壤深层扎根找水,适应干旱环境。 相似文献
14.
Four-week-old Helianthus annuus plants, grown in both soil andliquid culture, were root pruned at the point of root attachmentto the stem. Transpiration, leaf water potential and leaf conductivitywere monitored for several days after pruning. Pruning loweredtranspiration and leaf conductivity in amounts proportionalto the amount of pruning. In some experiments pruning causeda slight lowering of leaf water potential, while in others nopruning effect could be found. The effects of pruning varieddepending upon culture conditions, with greater effects beingfound in soil and unaerated liquid culture than in aerated liquidculture. Soil water potential did not appear to have a stronginfluence on the magnitude of the pruning effect. The effectsof root pruning are less than would be predicted by an Ohm'sLaw analysis of flow; possible reasons for this are discussed. 相似文献
15.
Diurnal Cycling in Root Resistance to Water Movement 总被引:5,自引:0,他引:5
The occurrence of diurnal changes in root resistance of cotton was studied by measuring the flow of water through 35-to70-day-old root systems under a pressure of 3.10 bars or a vacuum of 0.88 bar. The volume of exudate obtained under constant pressure or constant vacuum was 2 to 3 times greater near midday than near midnight indicating that the root resistance apparently was 2 to 3 times greater at night than during the day. The salt concentration of the exudate also cycled; the concentration was lowest at midday and highest at night, hence there was little diurnal variation in the total amount of salt moved per hour. The cycle for volume of exduate, salt concentration, and apparent root resistance had a period of 22 to 26 hours at 24°C. The cycle gradually died away 2 to 3 days after removal of the shoots. The diurnal variations appeared to be controlled by signals from the shoots because the phase of the cycles could be reset by changing the light-dark cycle under which the plants were grown. Cycling was eliminated by exposure to 8 or more days of continuous light before removing the shoots, and cycling could not be entrained by a 6 hour light-6hour dark cycle. Bubbling nitrogen gas through the nutrient medium stopped cycling. A possible role of ion or growth regulator action is discussed. 相似文献
16.
Giang Ngan Khong Pratap Kumar Pati Frédérique Richaud Boris Parizot Przemyslaw Bidzinski Chung Duc Mai Martine Bès Isabelle Bourrié Donaldo Meynard Tom Beeckman Michael Gomez Selvaraj Ishitani Manabu Anna-Maria Genga Christophe Brugidou Vinh Nang Do Emmanuel Guiderdoni Jean-Benoit Morel Pascal Gantet 《Plant physiology》2015,169(4):2935-2949
17.
测定不同生长时期及感染白叶枯病菌前后,水稻叶片中的草酸含量、乙醇酸氧化酶活性变化的结果,进一步证实乙醇酸氧化酶同时具有氧化乙醛酸的活性,但叶片中的内源草酸含量变化与乙醇酸氧化酶活性变化无关。高感品种玉梅153和高抗品种中二占在染病前后内源草酸含量变化之间并无显著差异。 相似文献
18.
A root excision technique was used to estimate the proportionof total resistance to water flux residing in the soil, theroot, and the xylem of lodgepole pine (Pinus contorta Douglex. Loud.) trees in the field. Root excision at mid-day alwaysresulted in rapid recovery of leaf water potential when waterwas supplied to the cut stem, suggesting a high soil-root resistance.Transpiration was unaffected if leaf water potential beforecutting was not limiting leaf conductance. By mid-June wateruptake by the excised stem always exceeded calculated crowntranspiration indicating recharge of internal sapwood storage.Predawn leaf water potential before root excision was highlycorrelated with total soil-plant resistance (r2 = 0·89)and calculated root water uptake (r2 = 0·92). 相似文献
19.
The effects of a period of water stress (drought conditioning)on responses to a second (challenge) stress were examined inyoung vegetative rice (Oryza sativa L.) plants. Drought conditioningdid not affect the rate of subsequent stress development, nor,in a first experiment, did it influence relations between turgor(p) and total () leaf water potential. However, conditioningdid extend the range of p over which stomata remained open andsignificantly reduced the amount of ABA which accumulated inthe leaf at a given p. The change in stomatal behaviour (stomataladjustment) was quantitatively accounted for by the change inleaf ABA accumulation. The reduction in ABA accumulation due to conditioning did notinvolve a change in the potential capacity to produce ABA, asABA accumulation in partially dehydrated detached leaves wasnot reduced by conditioning. It is suggested that effects ofconditioning on leaf ABA content in the intact plant involvechanges in the rate of ABA export from the leaf. Oryza sativa L, rice, drought conditioning, stomata, water stress, abscisic acid 相似文献
20.
Modification of Drought Resistance by Water Stress Conditioning in Acacia and Eucalyptus 总被引:1,自引:0,他引:1
Plants of Acacia and Eucalyptus species were grown under differentlevels of shading, nutrition, and irrigation to assess the effectof these factors on plant water use. Water use per unit of leaf(phyllode) area was affected only by the irrigation treatment,control plants that had received water daily using appreciablymore water than plants that had been repeatedly subjected towater stress. Water stress conditioning had little or no effecton plant height, leaf (phyllode) area, or minimum stomatal resistancein any of the species. Detailed study of the water stress conditioningof Eucalyptus robusta showed that controls used 46% more waterthan conditioned plants. Leaf area and plant height were unaffectedby conditioning. Control of transpiration was not due to stomatalfunctioning, both sets of plants operating with the same leafdiffusive resistance under conditions of ready water availability.Hydraulic conductivity of the intact root system was loweredby conditioning and it is suggested that this was due, at leastin part, to the effect that conditioning had on root xylem conductivity.Specific conductivity of stem sections was lowered by waterstress conditioning. Water stress avoidance was also associatedwith a more pronounced tendency for stomata to close prior towilting and with a higher level of leaf resistance which couldbe maintained at a low leaf water potential. Conditioned plantsexhibited drought tolerance in their ability to control lossof water from the leaf at lower leaf water potentials than thecontrols. 相似文献