首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Morphine and other opioid agonists induce spinal in vivo release of cholecystokinin (CCK), a neuropeptide with anti-opioid properties. However, so far the opioid receptor subtype responsible for this effect has not been determined. In the present in vivo microdialysis study, the morphine-induced release of cholecystokinin-like immunoreactivity (CCK-LI) in the dorsal horn was completely blocked by the delta-opioid antagonist naltrindole (10 microM in the perfusion fluid). Neither the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP; 10 microM in the perfusion fluid), nor the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI); 10 microM in the perfusion fluid) had any significant effect in this respect. In addition, systemic administration of the delta-opioid receptor agonist BW373U86 (1 mg/kg, s.c.) and spinal administration of the delta(2)-opioid receptor agonist, Tyr-D-Ala-Phe-Glu-Val-Val-Gly amide ([D-Ala(2)] deltorphin II) (1 microM in the perfusion fluid) induced a significant increase of the CCK-LI level. The effect of BW373U86 on spinal CCK-LI release was completely blocked by spinal administration of naltrindole. The mu-opioid receptor agonist [D-ala(2)-N-Me-Phe(4)-Gly(5)-ol]-enkephalin (DAMGO) (1 microM in the perfusion fluid or 1 mg/kg, s.c.) failed to alter the CCK-LI level. Peripheral nerve lesions have previously been shown to down-regulate mu- and delta-opioid receptors in the dorsal horn, to increase the gene-expression of CCK and CCK-receptor mRNA in dorsal root ganglion neurons and to alter the potassium-induced spinal CCK-LI release. After complete sciatic nerve transection, administration of the two selective delta-opioid receptor agonists induced a significant release of CCK-LI, which was comparable to controls. In contrast, neither systemic nor spinal administration of morphine and DAMGO altered the spinal CCK-LI release in axotomized animals. The present data indicate that the delta-opioid receptor mediates morphine-induced CCK-LI release in the spinal cord.  相似文献   

2.
孤啡肽受体是继经典的mu阿片受体、kappa阿片受体和delta阿片受体之后发现的又一类新型阿片受体,不仅在结构上具有同上述阿片受体相类似的特征,而且可介导相同或相似的细胞内生物学反应.孤啡肽受体对痛觉反应具有独特的调控模式.一方面,在背根神经节以及脊髓水平,孤啡肽受体主要介导镇痛效应,并且在脊髓水平还与其他阿片受体有协同效应以增强镇痛效果.另一方面,在脊髓上水平,孤啡肽受体往往产生痛敏而拮抗了其他阿片受体的镇痛效应.此外孤啡肽受体对痛觉的调控在不同物种间也表现一定的差异性.这为进一步阐明内源性阿片系统的痛觉调控作用提供一定的理论依据.  相似文献   

3.
Abstract: In this study, we have investigated the effect of mivazerol, [3-(1H-imidazol-4-yl)methyl-1]-2-hydroxy-benzamide hydrochloride, a new α2-agonist lacking hypotensive properties and a potential anti-ischemic drug, on the evoked release of norepinephrine, aspartate, and glutamate in tissue preparations from hippocampus, spinal cord T1–T5 section, rostrolateral ventricular medulla, and nucleus tractus solitarii of the brainstem of rat. A simple and efficient in vitro procedure to study pharmacologically the release of norepinephrine and glutamate is described. Tissues were chopped into (0.3 × 0.2 × 0.2 mm3) sections and the resulting minces were used for this study. Exposure to KCl (10–75 mM) for 5 min served as a stimulus for the release response. One, S (for aspartate and for glutamate release), or two such stimuli, S1 and S2 (for norepinephrine release) were conducted. The release of norepinephrine (+150% above baseline) was inhibited in a dose-dependent manner by mivazerol in hippocampus (IC50 = 1.5 × 10?8M), spinal cord (IC50 = 5 × 10?8M), rostrolateral ventricular medulla (IC50 = 10?7M), and nucleus tractus solitarii (IC50 = 7.5 × 10?8M), and by clonidine in hippocampus (IC50 = 5 × 10?8M), spinal cord (IC50 = 4.5 × 10?8M), rostrolateral ventricular medulla (IC50 = 2.5 × 10?7M), and nucleus tractus solitarii (IC50 = 10?7M). This effect was counteracted by the selective α2-antagonists yohimbine and rauwolscine. A significant glutamate and aspartate release response was also induced by KCl (35 mmol/L) in hippocampus (+250 and +135%, respectively) and spinal cord (+120 and +55%, respectively), in vitro. However, neither mivazerol nor clonidine, at doses up to 10 µM, had any significant effect on KCl-induced glutamate release in spinal cord, whereas mivazerol blocked completely the release of both amino acids in hippocampus and only the release of aspartate in spinal cord. On the other hand, clonidine (1 µM) was only effective in reducing by 40% the release of aspartate in hippocampus. These data indicate that (1) inhibition of KCl-induced norepinephrine release by mivazerol is mediated by its action on α2-adrenergic receptors; (2) at concentrations selective for α2-adrenergic receptors, only mivazerol was effective in blocking the KCl-induced glutamate release in hippocampal tissue; and (3) at the same concentrations, both mivazerol and clonidine were unable to inhibit glutamate release in the spinal cord. These data suggest that prevention of hyperadrenergic activity by mivazerol in perioperative patients may be mediated through its effect on the release of norepinephrine and/or the release of glutamate and aspartate in regions of the CNS that are involved in the control of cardiovascular homeostasis.  相似文献   

4.
Guan JS  Xu ZZ  Gao H  He SQ  Ma GQ  Sun T  Wang LH  Zhang ZN  Lena I  Kitchen I  Elde R  Zimmer A  He C  Pei G  Bao L  Zhang X 《Cell》2005,122(4):619-631
Opioid and tachykinin systems are involved in modulation of pain transmission in the spinal cord. Regulation of surface opioid receptors on nociceptive afferents is critical for opioid analgesia. Plasma-membrane insertion of delta-opioid receptors (DORs) is induced by stimulus-triggered exocytosis of DOR-containing large dense-core vesicles (LDCVs), but how DORs become sorted into the regulated secretory pathway is unknown. Here we report that direct interaction between protachykinin and DOR is responsible for sorting of DORs into LDCVs, allowing stimulus-induced surface insertion of DORs and DOR-mediated spinal analgesia. This interaction is mediated by the substance P domain of protachykinin and the third luminal domain of DOR. Furthermore, deletion of the preprotachykinin A gene reduced stimulus-induced surface insertion of DORs and abolished DOR-mediated spinal analgesia and morphine tolerance. Thus, protachykinin is essential for modulation of the sensitivity of nociceptive afferents to opioids, and the opioid and tachykinin systems are directly linked by protachykinin/DOR interaction.  相似文献   

5.
N-Methyl-D-aspartate (NMDA) administration exacerbates neurological dysfunction after traumatic spinal cord injury in rats, whereas NMDA antagonists improve outcome in this model. These observations suggest that release of excitatory amino acids contributes to secondary tissue damage after traumatic spinal cord injury. To further examine this hypothesis, concentrations of free amino acids were measured in spinal cord samples from anesthetized rats subjected to various degrees of impact trauma to the T9 spinal segment. Levels of excitatory and inhibitory neurotransmitter amino acids [gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, taurine] and levels of nonneurotransmitter amino acids (asparagine, glutamine, alanine, threonine, serine) were determined at 5 min, 4 h, and 24 h posttrauma. Uninjured surgical (laminectomy) control animals showed modest but significant declines in aspartate and glutamate levels, but not in other amino acids, at all time points. In injured animals, the excitatory amino acids glutamate and aspartate were significantly decreased by 5 min posttrauma, and remained depressed at 4 h and 24 h as compared with corresponding laminectomy controls. In contrast, the inhibitory amino acids, glycine, GABA, and taurine, were decreased at 5 min postinjury, had partially recovered at 4 h, and were almost fully recovered at 24 h. The nonneurotransmitter amino acids were unchanged at 5 min posttrauma and significantly increased at 4 h, with partial recovery at 24 h. At 4 h postinjury, severe trauma caused significantly greater decreases in aspartate and glutamate than did either mild or moderate injury. These findings are consistent with the postulated role of excitatory amino acids in CNS trauma.  相似文献   

6.
Hypoxia and ischemia occur in the spinal cord when blood vessels of the spinal cord are compressed under pathological conditions such as spinal stenosis, tumors, and traumatic spinal injury. Here by using spinal cord slice preparations and patch-clamp recordings we investigated the influence of an ischemia-simulating medium on dorsal horn neurons in deep lamina, a region that plays a significant role in sensory hypersensitivity and pathological pain. We found that the ischemia-simulating medium induced large inward currents in dorsal horn neurons recorded. The onset of the ischemia-induced inward currents was age-dependent, being onset earlier in older animals. Increases of sensory input by the stimulation of afferent fibers with electrical impulses or by capsaicin significantly speeded up the onset of the ischemia-induced inward currents. The ischemia-induced inward currents were abolished by the glutamate receptor antagonists CNQX (20 μM) and APV (50 μM). The ischemia-induced inward currents were also substantially inhibited by the glutamate transporter inhibitor TBOA (100 μM). Our results suggest that ischemia caused reversal operation of glutamate transporters, leading to the release of glutamate via glutamate transporters and the subsequent activation of glutamate receptors in the spinal dorsal horn neurons.  相似文献   

7.
Hu L  Zhu DN  Wang JQ  Sun ZJ  Yao T 《生理学报》2001,53(5):385-390
用脊髓(T8)中间外侧柱(IML)微透析方法结合高效液相色谱(HPLC)技术,研究延髓头端腹外侧区(RVLM)微量注射血管紧张素Ⅱ(ANGⅡ,100pmol,n=11)后脊髓IML氨基酸递质释放的变化.在RVLM区微量注射ANGⅡ(100pmol,n=11),能显著增加(P<0.01)脊髓(T8)内天门冬氨酸(ASP,从4.75±1.01升至8.90±2.28pmol/20μl)和谷氨酸(GLU,从18.99±8.64升至73.88±29.26pmol/20μl)的释放.在同一RVLM部位注射losartan(10nmol,n=8)可以显著抑制注射ANGⅡ引起的GLU释放升高反应(P<0.05).免疫荧光双标记结合共聚焦显微镜观察到RVLM内62%~91%的谷氨酸能神经元呈AT1受体免疫阳性.此结果提示ANGⅡ诱发的脊髓内谷氨酸释放可能来源于RVLM内AT1受体免疫阳性的谷氨酸能脊髓投射神经元.  相似文献   

8.
Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the descending pain system may be involved in TMD.  相似文献   

9.
Muscarinic facilitation of 14C-ACh release from post-ganglionic parasympathetic nerve terminals was studied in bladder strips prepared from spinal intact (SI) and spinal cord transected (SCT) rats. The spinal cord was transected at the lower thoracic spinal segments 3 weeks prior to the experiments. Using non-facilitatory stimulation (2 Hz) the release of ACh in spinal intact rats did not change in the presence of a non-specific muscarinic antagonist, atropine (100 nM), an M(1) specific antagonist (pirenzepine, 50 nM) or an M(1)-M(3) specific antagonist (4-DAMP, 5 nM). However, during a facilitatory stimulation paradigm (10 Hz or 40 Hz, 100 shocks) atropine and pirenzepine, but not 4-DAMP inhibited the release of ACh in bladders from spinal intact rats, indicating an M(1) receptor-mediated facilitation. In spinal cord transected rats, 2 Hz stimulation-induced release was significantly inhibited by atropine or 4-DAMP but not by pirenzepine indicating that a pre-junctional facilitatory mechanism mediated via M(3) muscarinic receptors could be induced by a non-facilitatory stimulation paradigm after spinal injury. In bladders of spinal cord transected rats, 10 Hz stimulation-evoked release of ACh was also inhibited by atropine and 4-DAMP (5 nM) but not by pirenzepine (50 nM). These results indicate that pre-junctional muscarinic receptors at cholinergic nerve endings in the bladder change after chronic spinal cord injury. It appears that low affinity M(1) muscarinic receptors are replaced by high affinity M(3) receptors. This change in modulation of ACh release may partly explain the bladder hyperactivity after chronic spinal cord injury.  相似文献   

10.
Previous work in this laboratory has shown that adrenal medullary transplants into the spinal cord subarachnoid space can reduce pain sensitivity. This analgesia most likely results from the release of neuroactive substances, particularly catecholamines and opioid peptides, from the transplanted cells into the CSF of the spinal cord, since it can be attenuated or blocked by alpha-adrenergic or opiate antagonists. The purpose of the present study was to more directly measure the release of catecholamines from adrenal medullary transplants in the spinal cord CSF using a spinal superfusion technique. CSF samples from rats with 6-month-old transplants were assayed for catecholamines using HPLC with electro-chemical detection. Results indicated that norepinephrine levels were increased threefold, and epinephrine levels nearly 100-fold, in animals with adrenal medullary transplants compared with control transplanted animals. There was no apparent increase in dopamine levels. Furthermore, the increased levels of total catecholamines were correlated with decreased pain sensitivity. Results of this study indicate that adrenal medullary transplants can survive for long periods in the rat spinal CSF and continue to release high levels of catecholamines. Together, the release of catecholamines and opioid peptides from adrenal medullary transplants may provide the ideal combination for the reduction of pain.  相似文献   

11.
The effects of treatment with the anti-convulsant agents, lamotrigine and riluzole were compared with gabapentin in a rat experimental model of neuropathic pain. Rats were treated intraperitoneally, with gabapentin (30, 100 and 300 mg/kg), lamotrigine (2, 10 and 50 mg/kg) or riluzole (6 and 12 mg/kg) prior to, and every 12 h for 4 days following chronic constriction injury (CCI) of the sciatic nerve. Mechanical and cold sensitivity were assessed prior to surgery (baseline) and then at 4, 8 and 12 days following CCI. The four-day treatment with each of the agents was effective at producing reductions in the development of mechanical and cold hypersensitivity for periods ranging from the fourth to 12th day. The highest doses of each of the agents were also assessed on formalin-induced nociceptive behaviors and on formalin-induced increases in extracellular glutamate (Glu) and aspartate (Asp) in the spinal cord dorsal horn (SCDH) of awake behaving rats using in vivo microdialysis. Nociceptive scores in formalin test were significantly decreased by gabapentin (300 mg/kg i.p.) and riluzole (12 mg/kg i.p.), but not by lamotrigine (50 mg/kg i.p.). Formalin-induced increases in glutamate levels in SCDH were lowered significantly, as compared with the controls, with all drugs both in the first phase and second phases, with the greatest effects for riluzole and gabapentin. Similar suppressive effects of the drugs were observed on formalin-induced increases in spinal aspartate, except that gabapentin and lamotrigine produced effects only during the second phase. Riluzole produced profound and prolonged reductions in the spinal levels of glutamate and aspartate both for basal and formalin-stimulated release. In conclusion, the results suggest that the anti-convulsant agents gabapentin, lamotrigine and riluzole may reduce the development of hyperalgesia in a rat model of neuropathic pain by reducing the spinal release of glutamate. Riluzole's pronounced suppressive effects on spinal EAA levels is attributed to its established role as a glutamate release inhibitor and an enhancer of glutamate transporter activity.  相似文献   

12.
Dong YN  Mao MH  Wang XM  Han JS 《生理学报》1998,50(6):663-670
西方采用放射配体结合实验研究了100HZ电针耐受发生发展过程中大鼠脑和脊髓K受体结构特性的变化。大鼠每天给予100HZ电针1次,连续7d。分别在电针的第1、3、5、7天取不同脑区进行观察。  相似文献   

13.
Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA). However, whether these synapses express vesicular glutamate transporters (VGLUTs) capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT) contacting calbindin-immunoreactive (-IR) Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.  相似文献   

14.
Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1β release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1β and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1β-deficient animals. Together, these data show that IL-1β inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date.  相似文献   

15.
Glutamatergic signaling and intracellular calcium mobilization in the spinal cord are crucial for the development of nociceptive plasticity, which is associated with chronic pathological pain. Long-form Homer proteins anchor glutamatergic receptors to sources of calcium influx and release at synapses, which is antagonized by the short, activity-dependent splice variant Homer1a. We show here that Homer1a operates in a negative feedback loop to regulate the excitability of the pain pathway in an activity-dependent manner. Homer1a is rapidly and selectively upregulated in spinal cord neurons after peripheral inflammation in an NMDA receptor-dependent manner. Homer1a strongly attenuates calcium mobilization as well as MAP kinase activation induced by glutamate receptors and reduces synaptic contacts on spinal cord neurons that process pain inputs. Preventing activity-induced upregulation of Homer1a using shRNAs in mice in vivo exacerbates inflammatory pain. Thus, activity-dependent uncoupling of glutamate receptors from intracellular signaling mediators is a novel, endogenous physiological mechanism for counteracting sensitization at the first, crucial synapse in the pain pathway. Furthermore, we observed that targeted gene transfer of Homer1a to specific spinal segments in vivo reduces inflammatory hyperalgesia. Thus, Homer1 function is crucially involved in pain plasticity and constitutes a promising therapeutic target for the treatment of chronic inflammatory pain.  相似文献   

16.
The present study investigated the effects of a striatal lesion induced by kainic acid on the striatal modulation of dopamine (DA) release by mu- and delta-opioid peptides. The effects of [D-Pen2,D-Pen5]-enkephalin (DPDPE) and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO), two highly selective delta- and mu-opioid agonists, respectively, were studied by microdialysis in anesthetized rats. In control animals both opioid peptides, administered locally, significantly increased extracellular DA levels. The effects of DPDPE were also observed in animals whose striatum had been previously lesioned with kainic acid. In contrast to the effects of the delta agonist, the significant increase induced by DAGO was no longer observed in lesioned animals. These results suggest that delta-opioid receptors modulating the striatal DA release, in contrast to mu receptors, are not located on neurons that may be lesioned by kainic acid.  相似文献   

17.
反复电针对慢性痛的累加治疗作用及其机制研究   总被引:22,自引:0,他引:22  
罗非 《生理科学进展》1996,27(3):241-244
本研究从基础和临床两方面观察了反复电针对慢性痛的累加治疗作用,并结合疼痛患者及慢性痛动物模型中几种神经肽的放射免疫测定及相应受体拮抗剂的药理学研究结果,探讨了产生累加效应的可能机制。结果表明,在临床脊髓损伤性痉挛患者,100Hz穴位体表电刺激有效地缓解痉挛并有累加效应;在临床慢性痛患者,2/15Hz变频TENS刺激有效地治疗疼痛并具有累加效应。在关节炎模型大鼠,电针刺激能产生明显的镇痛并具有累加效  相似文献   

18.
Actions of Tremorgenic Fungal Toxins on Neurotransmitter Release   总被引:17,自引:15,他引:2  
The neurochemical effects of the tremorgenic mycotoxins Verruculogen and Penitrem A, which produce a neurotoxic syndrome characterised by sustained tremors, were studied using sheep and rat synaptosomes. The toxins were administered in vivo, either by chronic feeding (sheep) or intraperitoneal injection 45 min prior to killing (rat), and synaptosomes were subsequently prepared from cerebrocortical and spinal cord/medullary regions of rat, and corpus striatum of sheep. Penitrem A (400 mg mycelium/kg) increased the spontaneous release of endogenous glutamate, GABA (gamma-aminobutyric acid), and aspartate by 213%, 455%, and 277%, respectively, from cerebrocortical synaptosomes. Verruculogen (400 mg mycelium/kg) increased the spontaneous release of glutamate and aspartate by 1300% and 1200%, respectively, but not that of GABA from cerebrocortical synaptosomes. The spontaneous release of the transmitter amino acids or other amino acids was not increased by the tremorgens in spinal cord/medullary synaptosomes. Penitrem A pretreatment reduced the veratrine (75 microM) stimulated release of glutamate, aspartate, and GABA from cerebrocortical synaptosomes by 33%, 46%, and 11%, respectively, and the stimulated release of glycine and GABA from spinal cord/medulla synaptosomes by 67% and 32% respectively. Verruculogen pretreatment did not alter the veratrine-induced release of transmitter amino acids from cerebrocortex and spinal cord/medulla synaptosomes. Penitrem A pretreatment increased the spontaneous release of aspartate, glutamate, and GABA by 68%, 62%, and 100%, respectively, from sheep corpus striatum synaptosomes but did not alter the synthesis and release of dopamine in this tissue. Verruculogen was shown to cause a substantial increase (300-400%) in the miniature-end-plate potential (m.e.p.p.) frequency at the locust neuromuscular junction. The response was detectable within 1 min, rose to a maximum within 5-7 min, and declined to the control rate over a similar period. No change in the amplitude of the m.e.p.p.'s was observed. These effects of the tremorgens on transmitter release are interpreted in terms of their mode of action.  相似文献   

19.
Individuals with spinal cord injuries above thoracic level 6 experience episodic bouts of life-threatening hypertension as part of a condition termed autonomic dysreflexia (AD). The hypertension can be caused by stimulation of the skin, distension of the urinary bladder or colon, and/or muscle spasms. Transcutaneous electrical nerve stimulation (TENS) may reduce the severity of AD because TENS has been used to inhibit second-order neurons in the dorsal horn. Therefore, we tested the hypothesis that TENS attenuates the hemodynamic responses to colon distension. Eleven Wistar rats underwent spinal cord transection between thoracic vertebrae 4 and 5 (paraplegic, n = 6) or between cervical vertebra 7 and thoracic vertebra 1 (quadriplegic, n = 5). After recovery, all rats were instrumented with a radiotelemetry device for recording arterial pressure. Subsequently, the hemodynamic responses to graded colon distension were determined before and during TENS. During TENS the hemodynamic responses to colon distension were significantly attenuated. Thus TENS may be a preventive approach to reduce the severity of AD in paraplegic and quadriplegic individuals.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a selective loss of motor neurones accompanied by intense gliosis in lesioned areas of the brain and spinal cord. Glutamate-mediated excitotoxicity resulting from impaired astroglial uptake constitutes one of the current pathophysiological hypotheses explaining the progression of the disease. In this study, we examined the regulation of glutamate transporters by type 5 metabotropic glutamate receptor (mGluR5) in activated astrocytes derived from transgenic rats carrying an ALS-related mutated human superoxide dismutase 1 (hSOD1(G93A)) transgene. Cells from transgenic animals and wild-type littermates showed similar expression of glutamate-aspartate transporter and glutamate transporter 1 (GLT-1) after in vitro activation, whereas cells carrying the hSOD1 mutation showed a three-fold higher expression of functional mGluR5, as observed in the spinal cord of end-stage animals. In cells from wild-type animals, (S)-3,5-dihydroxyphenylglycine (DHPG) caused an immediate protein kinase C (PKC)-dependent up-regulation of aspartate uptake that reflected the activation of GLT-1. Although this effect was mimicked in both cultures by direct activation of PKC using phorbol myristate acetate, DHPG failed to up-regulate aspartate uptake in cells derived from the transgenic rats. The failure of activated mGluR5 to increase glutamate uptake in astrocytes derived from this animal model of ALS supports the theory of glutamate excitotoxicity in the pathogenesis of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号