首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The high membrane potential ofAcetabularia (E m=–170 mV) is due to an electrogenic pump in parallel with the passive diffusion system (E d=–80 mV) which could be studied separately in the cold, when the pump is blocked. Electrical measurements under normal conditions show that the pump pathway consists of its electromotive forceE p with two elementsP 1 andP 2 in series;P 2 is shunted by a large capacitance (C p=3 mF cm–2). The nonlinear current-voltage relationship ofP 1 (light- and temperature-sensitive) could be determined separately; it reflects the properties of a carrier-mediated electrogenic pump. The value ofE p (–190 mV) indicates a stoichiometry of 21 between electrogenically transported charges and ATP. The electrical energy, normally stored inC p, compares well with the metabolic energy, stored in the ATP pool. The nonlinear current-voltage relationship ofP 2 (attributed to phosphorylating reactions) is also sensitive to light and temperature and is responsible for the region of negative conductance of the overall current-voltage relationship. The power of the pump (1 W cm–2) amounts to some percent of the total energy turnover. The high Cl fluxes (1 nmol cm–2 sec–1) and the electrical properties of the plasmalemma are not as closely related as assumed previously. For kinetic reasons, a direct and specific Cl pathway between the vacuole and outside is postulated to exist.  相似文献   

2.
Natronomonas pharaonis halorhodopsin (pHR) is an archaeal rhodopsin functioning as an inward-directed, light-driven Cl- pump. To characterize the electrophysiological features of the Cl- pump activity of pHR, we expressed pHR in Xenopus laevis oocytes and analyzed its photoinduced Cl- pump activity using the two-electrode voltage-clamp technique. Photoinduced outward currents were observed only in the presence of Cl-, Br-, I-, NO3-, and SCN-, but not in control oocytes, indicating that photoinduced anion currents were mediated by pHR. The relationship between photoinduced Cl- current via pHR and the light intensity was linear, demonstrating that transport of Cl- is driven by a single-photon reaction and that the steady-state current is proportional to the excited pHR molecule. The current-voltage relationship for pHR-mediated photoinduced currents was also linear between -150 mV and +50 mV. The slope of the line describing the current-voltage relationship increased as the number of the excited pHR molecules was increased by the light intensity. The reversal potential (VR) for Cl- as the substrate for the anion pump activity of pHR was about -400 mV. The value for VR was independent of light intensity, meaning that the VR reflects the intrinsic value of the excited pHR molecule. The value of VR changed significantly for the R123K mutant of pHR. We also show that the Cl- pump activity of pHR can generate a substantial negative membrane potential, indicating that pHR is a very potent Cl- pump. We have also analyzed the kinetics of voltage-dependent Cl- pump activity as well as that of the photocycle. Based on these data, a kinetic model for voltage-dependent Cl- transport via pHR is presented.  相似文献   

3.
Metabolic modulation of stoichiometry in a proton pump   总被引:4,自引:0,他引:4  
The current-voltage characteristics of the ATP-dependent proton pump in the plasma membrane of Neurospora have been explored under varied metabolic conditions imposed by mutation and by differential respiratory inhibition. The reversal potential, or presumed equilibrium potential, for the pump was observed at about -400 mV under energy-replete conditions, and at about -200 mV during a stable metabolic downshift of 55 percent. Steady-state levels of adenine nucleotides and inorganic phosphate, however, were not affected by this partial energy restriction, so that under both normal and restricted conditions the apparent free energy of ATP hydrolysis remained near -500 mV. The results suggest that a normal pump stoichiometry of 1 H+ extruded/1 ATP split is modified to 2 H+/1 ATP, by chronic energy restriction.  相似文献   

4.
Endocytic vesicles possess an electrogenic proton pump, and measurements of ATPase activity suggest that Cl- may stimulate proton pump activity. This study was undertaken to measure the steady-state pH, potential (delta psi), and total proton electrochemical gradients established by the rat liver multivesicular body (MVB) proton pump and to examine the effects of Cl- (0.5-140 mM) on these gradients. Radiolabeled [( 14C] methylamine and 36Cl-) and fluorescent (fluorescein isothiocyanate-conjugated low density lipoproteins) probes were used to assess internal pH (pHi) and delta psi. In the absence of ATP, pHi averaged 7.37 +/- 0.05 (extracellular pH 7.31 +/- 0.02), and delta psi ranged from -32 to -71 mV; but neither pHi nor delta psi varied consistently with [Cl-]. In the presence of ATP, pHi decreased progressively with increasing [Cl-] to a plateau value of about 5.89 at greater than or equal to 25 mM Cl-, and MVB exhibited an interior positive delta psi that was maximal at the lowest Cl- concentration (+65.5 mV) and decreased as medium Cl- increased. The total ATP-dependent proton electrochemical gradient (proton-motive force (delta p] averaged 118.0 +/- 4.3 mV and did not change in any consistent manner as [Cl-] varied almost 300-fold. However, initial rates of MVB acidification increased with increasing [Cl-]. These studies indicate that: (a) in the absence of ATP, isolated MVB exhibited a negative delta psi, probably a Donnan potential; (b) in the presence of ATP and at a [Cl-] similar to that in hepatocyte cytoplasm (25 mM), MVB pHi was 5.89, and delta psi was +9.6 mV; and (c) over the range of [Cl-] tested, the magnitudes of delta pH and delta psi were inversely related, apparently related to Cl- availability, but the ATP-dependent delta p did not vary. Therefore, it is concluded that Cl- increases the initial rate of vesicle acidification in MVB and also affects the relative chemical and electrical contributions of the steady-state proton pump-determined delta p. Cl-, however, does not alter steady-state delta p.  相似文献   

5.
Na-K pump current in the Amphiuma collecting tubule   总被引:4,自引:2,他引:2       下载免费PDF全文
There is strong evidence supporting the hypothesis of an electrogenic Na-K pump in the basolateral membrane of several epithelia. Thermodynamic considerations and results in nonepithelial cells indicate that the current carried by the pump could be voltage dependent. In order to measure the pump current and to determine its voltage dependence in a tight epithelium, we have used the isolated perfused collecting tubule of Amphiuma and developed a technique for clamping the basolateral membrane potential (Vbl) through transepithelial current injection. The transcellular current was calculated by subtracting the paracellular current (calculated from the transepithelial conductance measured in the presence of luminal amiloride) from the total transepithelial current. Basolateral membrane current-voltage (I-V) curves were obtained in conditions where the ratio of the pump current to the total basolateral membrane current had been maximized by loading the cells with Na+ (exposure to low-K+ bath), and by blocking the basolateral K+ conductance with barium. The pump current was defined as the difference of the current across the basolateral membrane measured before and 10-15 s after the addition of strophanthidin (20 microM) to the bath solution. With a bath solution containing 3 mM K+, the pump current was nearly constant in the Vbl range of -20 to -80 mV (52 +/- 5 microA.cm-2 at -60 mV) but showed a marked voltage dependence at higher negative Vbl (pump current decreased to 5 +/- 9 microA.cm-2 at -180 mV). In a 1.0 mM K bath, the shape of the pump I-V curve was similar but the amplitude of the current was decreased (24 +/- 4 microA.cm-2 at -60 mV). In a 0.1 mM K bath, the pump current was not significantly different from 0. Our results indicate that the basolateral Na-K pump generates a current which depends on the extracellular potassium concentration. With physiological peritubular concentration of K+ and in the physiological range of potential, the pump activity, measured as the pump-generated current, was independent of the membrane potential.  相似文献   

6.
Electrical and biochemical properties of an enzyme model of the sodium pump   总被引:5,自引:0,他引:5  
The electrochemical properties of a widely accepted six-step reaction scheme for the Na+, K+-ATPase have been studied by computer simulation. Rate coefficients were chosen to fit the nonvectorial biochemical data for the isolated enzyme and a current-voltage (I-V) relation consistent with physiological observations was obtained with voltage dependence restricted to one (but not both) of the two translocational steps. The vectorial properties resulting from these choices were consistent with physiological activation of the electrogenic sodium pump by intracellular and extracellular sodium (Na+) and potassium (K+) ions. The model exhibited K+/K+ exchange but little Na+/Na+ exchange unless the energy available from the splitting of adenosine triphosphate (ATP) was reduced, mimicking the behavior seen in squid giant axon. The vectorial ionic activation curves were voltage dependent, resulting in large shifts in apparent Km's with depolarization. At potentials more negative than the equilibrium or reversal potential transport was greatly diminished unless the free energy of ATP splitting was reduced. While the pump reversal potential is at least 100 mV hyperpolarized relative to the resting potential of most cells, the voltage-dependent distribution of intermediate forms of the enzyme allows the possibility of considerable slope conductance of the pump I-V relation in the physiological range of membrane potentials. Some of the vectorial properties of an electrogenic sodium pump appear to be inescapable consequences of the nonvectorial properties of the isolated enzyme. Future application of this approach should allow rigorous quantitative testing of interpretative ideas concerning the mechanism and stoichiometry of the sodium pump.  相似文献   

7.
Electrogenic Cl- pump in Acetabularia   总被引:1,自引:0,他引:1  
Measurements of this transmembrane potential difference (V) under various conditions have demonstrated the operation of an electrogenic Cl- pump in the outer plasma membrane (plasmalemma) of the unicellular marine alga Acetabularia. In preparations of partly purified membranes (containing plasmalemma), there is Cl- stimulated, N,N'-dicyclohexylcarbodiimide-insensitive, vanadate-sensitive ATPase activity with a pH optimum around pH 6.5. These properties are consistent with the assumption that the electrogenic Cl- pump is an ATPase. In order to investigate electrical details of the "Mitchellian" type of charge-translocating enzyme, steady-state current-voltage curves of the electrogenic pump (Ip(V)) were measured in vivo under dark and light conditions and analysed by two-state reaction kinetic model. This model with the resulting parameters predicts V-sensitive, undirectional Cl- effluxes through the pump. The predictions of this model agree with the experimental results. Green light causes a fast decrease of V, which is explained as a disturbance of the pump cycle. Relaxation studies on this effect and reaction kinetic analysis of Ip(V) under different external Cl- concentrations are used to develop a consistent three-state model of the pump that includes the order of and absolute rate constants of individual reactions, states of charge, stoichiometry, voltage-sensitivity and density of the pump molecules in the membrane.  相似文献   

8.
We describe ATP-dependent inhibition of the 75-105-pS (in 250 mM Cl-) anion channel (SCl) from the sarcoplasmic reticulum (SR) of rabbit skeletal muscle. In addition to activation by Ca2+ and voltage, inhibition by ATP provides a further mechanism for regulating SCl channel activity in vivo. Inhibition by the nonhydrolyzable ATP analog 5'-adenylylimidodiphosphate (AMP-PNP) ruled out a phosphorylation mechanism. Cytoplasmic ATP (approximately 1 mM) inhibited only when Cl- flowed from cytoplasm to lumen, regardless of membrane voltage. Flux in the opposite direction was not inhibited by 9 mM ATP. Thus ATP causes true, current rectification in SCl channels. Inhibition by cytoplasmic ATP was also voltage dependent, having a K(I) of 0.4-1 mM at -40 mV (Hill coefficient approximately 2), which increased at more negative potentials. Luminal ATP inhibited with a K(I) of approximately 2 mM at +40 mV, and showed no block at negative voltages. Hidden Markov model analysis revealed that ATP inhibition 1) reduced mean open times without altering the maximum channel amplitude, 2) was mediated by a novel, single, voltage-independent closed state (approximately 1 ms), and 3) was much less potent on lower conductance substates than the higher conductance states. Therefore, the SCl channel is unlikely to pass Cl- from cytoplasm to SR lumen in vivo, and balance electrogenic Ca2+ uptake as previously suggested. Possible roles for the SCl channel in the transport of other anions are discussed.  相似文献   

9.
In fourth instar larvae of Camptochironomus tentans, net sodium uptake from 2 mM-NaCl has an electrogenic component. During net uptake the transepithelial potential (TEP) alters from a value of approximately - 40 mV (sign refers to haemolymph), in depleted animals, to approximately o mV. The TEP in depleted larvae is dependent upon external sodium concentration above about I mM-Na+, becoming increasingly electropositive (haemolymph relative to medium) at high sodium concentrations. This effect is exaggerated in Na2SO4 compared with NaCl. At an external concentration of 2mM-NaCl, chloride is carried by an electroneutral mechanism, probably a closely coupled Cl-/anion exchange. However, it is possible that chloride transport could become somewhat electrogenic at higher concentrations. Lithium competes with sodium for the electrogenic pump. Observed TEPs differ greatly from those required to maintain passively the haemolymph concentrations of sodium and chloride.  相似文献   

10.
A Eisenrauch  E Bamberg 《FEBS letters》1990,268(1):152-156
Sarcoplasmic reticulum vesicles containing largely Ca2(+)-ATPase were incorporated into planar lipid membranes. The ATPase was activated by a UV flash-induced concentration jump of ATP from a photolabile caged ATP. Under these conditions stationary pump currents were observed. The dependence of these pump currents on applied voltages was investigated. The current-voltage curve of the Ca2(+)-ATPase shows monotonously increasing pump currents with increasing positive potentials of the ATP containing compartment. This indicates the existence of electrogenic steps in the direction of the transported Ca2+ ions. From the extrapolated reversal potentials of the curve is concluded that less than four positive net charges are transported per hydrolyzed ATP.  相似文献   

11.
The ion transport system responsible for intracellular pH (pHi) regulation in squid giant axons was examined in experiments with pH- sensitive microelectrodes and isotopic fluxes of Na+ and Cl-. In one study, axons were acid-loaded and the rate of the subsequent pHi recovery was used to calculate the acid extrusion rate. There was an absolute dependence of acid extrusion on external Na+, external HCO-3 (at constant pH), and internal Cl-. Furthermore, the dependence of the acid extrusion rate on each of these three parameters was described by Michaelis-Menten kinetics. Acid extrusion was stimulated by an acid pHi, required internal ATP, and was blocked by external 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). Under a standard set of conditions (i.e., [HCO-3]o = 12 mM, pHo = 8.00, [Na+]o = 425 mM, [Cl-]i = 150 mM, [ATP]i = 4 mM, pHi = 6.5, and 16 degrees C), the mean acid extrusion rate was 7.5 pmol X cm-2 X s-1. In a second study under the above standard conditions, the unidirectional Na+ efflux (measured with 22Na) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean influx was about 3.4 pmol X cm-2 X s- 1. This net influx required external HCO-3, internal Cl-, and acid pHi, internal ATP, and was blocked by SITS. In the final series of experiments under the above standard conditions, the unidirectional Cl- influx (measured with 36Cl) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean efflux was approximately 3.9 pmol X cm-2 X s-1. This net efflux required external HCO-3, external Na+, an acid pHi, internal ATP, and was blocked by SITS. We conclude that the pHi-regulating system mediates the obligate net influx of HCO-3 (or equivalent species) and Na+ and the net efflux of Cl- in the stoichiometry of 2:1:1. The transport system is stimulated by intracellular acid loads, requires ATP, and is blocked by SITS.  相似文献   

12.
An increase in aqueous K+ from 0 to 4 mM increased the potential difference (anomalous response of electrogenic (Na+ + K+)-ATPase antiport) by 1.1 mV in Cl(-)-free solutions compared to 6.8 mV in Cl- solutions. With amphotericin B added to the tear solution in Cl(-)-free solutions, the anomalous PD response for the addition of 4 mM K+ to the aqueous solution was about 20 mV, significantly greater than in Cl- solutions. This anomalous response was inhibited by ouabain. These data support the electrogenicity of the (Na+ + K+)-ATPase pump. It is also evident that, for the pump to respond, Na+ should readily enter the cell. This may be accomplished experimentally, either across the basolateral membrane in Cl- solutions or across the apical membrane in Cl(-)-free solutions with amphotericin B present in the tear solution.  相似文献   

13.
Elevation of intracellular cAMP levels in Necturus gallbladder epithelium (NGB) induces an apical membrane Cl- conductance (GaCl). Its characteristics (i.e., magnitude, anion selectivity, and block) were studied with intracellular microelectrode techniques. Under control conditions, the apical membrane conductance (Ga) was 0.17 mS.cm-2, primarily ascribable to GaK. With elevation of cell cAMP to maximum levels, Ga increased to 6.7 mS.cm-2 and became anion selective, with the permeability sequence SCN- > NO3- > I- > Br- > Cl- >> SO4(2-) approximately gluconate approximately cyclamate. GaCl was not affected by the putative Cl- channel blockers Cu2+, DIDS, DNDS, DPC, furosemide, IAA-94, MK-196, NPPB, SITS, verapamil, and glibenclamide. To characterize the cAMP-activated Cl- channels, patch-clamp studies were conducted on the apical membrane of enzyme-treated gallbladders or on dissociated cells from tissues exposed to both theophylline and forskolin. Two kinds of Cl- channels were found. With approximately 100 mM Cl- in both bath and pipette, the most frequent channel had a linear current-voltage relationship with a slope conductance of approximately 10 pS. The less frequent channel was outward rectifying with slope conductances of approximately 10 and 20 pS at -40 and 40 mV, respectively. The Cl- channels colocalized with apical maxi-K+ channels in 70% of the patches. The open probability (Po) of both kinds of Cl- channels was variable from patch to patch (0.3 on average) and insensitive to [Ca2+], membrane voltage, and pH. The channel density (approximately 0.3/patch) was one to two orders of magnitude less than that required to account for GaCl. However, addition of 250 U/ml protein kinase A plus 1 mM ATP to the cytosolic side of excised patches increased the density of the linear 10-pS Cl- channels more than 10- fold to four per patch and the mean Po to 0.5, close to expectations from GaCl. The permeability sequence and blocker insensitivity of the PKA-activated channels were identical to those of the apical membrane. These data strongly suggest that 10-pS Cl- channels are responsible for the cAMP-induced increase in apical membrane conductance of NGB epithelium.  相似文献   

14.
The mechanism of Cl- secretion in the isolated, resting (i.e. cimetidine-treated) gastric mucosa of Necturus has been investigated with radioisotopic and electrophysiological techniques. Measurement of transepithelial 36Cl- fluxes (mucosal to serosal (M leads to S), Jms Cl-; S leads to M, Jsm Cl-) during control conditions show that at open circuit, when the transepithelial potential difference psi ms = 20 mV (S ground), Jms Cl- = Jsm Cl-, i.e. Jnet Cl- = 0, but during short-circuit current conditions Jnet Cl- = I sc = 2 mu equiv cm-2 h. Experiments with low [Cl-] solutions indicate that Cl- exchange diffusion does not contribute significantly to either Jms Cl- or Jsm Cl-. Double-barrelled, Cl- -selective microelectrodes showed that in open circuit, the cellular (C) chemical potential for Cl-, psi c Cl- = 31 mV (apparent [Cl-] = 29 mM), the electrical potential across the M membrane, psi m = -34 mV (mucosa ground) while that across the S membrane, psi s = -52 mV (serosa ground). During short-circuit current conditions, psi m = psi s = -49 mV and [Cl-]c = 30 mM. The permeability of the M membrane to Cl- (Pm Cl-) was calculated both from the tracer experiments and the electrode measurements by using the constant-field equation. Short-term (45 s) uptake of 36Cl- at [Cl]m = 96 mM during short circuit conditions gave Pm Cl- = 2.6 x 10(-5) cm s-1. Measurement of [Cl-]c by means of the electrodes when [Cl-]m was changed from 96 to 2 mM or from 2 to 96 mM gave Pm Cl- = 2.9-5.7 x 10(-5) cm s-1. Our results indicate that during open circuit conditions Cl- is accumulated across the S membrane into gastric cells in an energy-requiring step, but since Jnet Cl- = 0, Cl- must leak back into the S solution at a rate equal to the entry rate. When the tissue is short-circuited, Cl- secretion occurs (Jnet Cl- = Isc) owing to the same energy-requiring accumulation of Cl- by the cells and a passive (apparently electrodiffusive) movement across the mucosal membrane.  相似文献   

15.
16.
The aim of this study was to investigate the functional expression of cystic fibrosis transmembrane conductance regulator (CFTR) with electrophysiological and molecular technique in rat oviduct epithelium. In whole-cell patch clamp, oviduct epithelial cells responded to 100 microM 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) with a rise in inward current in Gap-free mode, which was inhibited successively by 5 microM CFTR(inh)-172, a CFTR specific inhibitor, and 1 mM diphenylamine-2-carboxylate (DPC), the Cl- channel blocker. The cAMP-activated current exhibited a linear current-voltage (I-V) relationship and time- and voltage-independent characteristics. The reversal potentials of the cAMP-activated currents in symmetrical Cl- solutions were close to the Cl- equilibrium, 0.5+/-0.2 mV (n=4). When Cl- concentration in the bath solution was changed from 140 mM to 70 mM and a pipette solution containing 140 mM Cl- was used, the reversal potential shifted to a value close to the new equilibrium for Cl-, 20+/-0.6 mV (n=4), as compared with the theoretic value of 18.7 mV. In addition, mRNA expression of CFTR was also detected in rat oviduct epithelium. Western blot analysis showed that CFTR protein is found in the oviduct throughout the cycle with maximal expression at estrus, and immunofluorescence and immunohistochemistry analysis revealed that CFTR is located at the apical membrane of the epithelial cells. These results showed that the cAMP-activated Cl- current in the oviduct epithelium was characteristic of CFTR, which provided direct evidence for the functional expression of CFTR in the rat oviduct epithelium. CFTR may play a role in modulating fluid transport in the oviduct.  相似文献   

17.
Lysosomes (tritosomes) were purified from the livers of rats injected with Triton WR 1339. The lysosomes developed an Mg2+-ATP-dependent pH gradient as measured by Acridine orange accumulation. H+ transport was supported by chloride, but not sulfate, and was independent of the cation used. H+ transport and Mg2+-stimulated ATPase was inhibited by diethylstilbesterol (K0.5 = 2 microM). N-Ethylmaleimide inhibited H+ transport (K0.5 = 30 microM). At low concentrations of N-ethylmaleimide, ATP partially protected H+ transport from inhibition with N-ethylmaleimide. Photolysis with 8-azido-ATP inhibited H+ transport and Mg2+-stimulated ATPase activity. Under these same conditions, 8-azido-[alpha-32P]ATP reacted with a number of polypeptides of the intact lysosome and lysosomal membranes. Pump-dependent potentials were measured using the fluorescent potential-sensitive dye, DiSC3(5) (3,3'-dipropylthiocarbocyanine) and ATP-dependent potential generation was inhibited by diethylstilbesterol. Chloride, but not sulfate reduced the magnitude of the ATP-dependent membrane potential, as measured using merocyanine 540. The chloride conductance, independent of ATP, was of sufficient magnitude to generate a H+ gradient driven by external chloride in the presence of tetrachlorosalicylanilide. In Cl- free media, ATP-dependent H+ transport was restored to control levels by outwardly directed K+ gradients in the presence of valinomycin. The role of cell Cl- is to provide the necessary conductance for supporting lysosomal acidification by the electrogenic proton pump.  相似文献   

18.
Human airway epithelial cells were obtained by nasal brushing, thus avoiding the use of proteolytic enzymes for cell isolation. Whole-cell Cl- conductances were studied in these cells by means of the patch-clamp technique. During whole-cell recordings, cell swelling activated a Cl- conductance that was blocked by indanyloxyacetic acid (48 +/- 10% inhibition at 50 microM). The swelling-induced current outwardly rectified and showed inactivation at depolarizing voltages (> or = +60 mV) and activation at hyperpolarizing voltages (< or = -30 mV). The voltage sensitivity of current activation was approximately twice that of inactivation. Another Cl- current with different kinetics was observed when nonswollen airway cells were stimulated with ionomycin (2 microM) in the presence of 1 mM Ca2+. The Ca(2+)-induced current exhibited activation during depolarizing voltage steps (> or = +40 mV) and inactivation during hyperpolarizing voltage steps (< or = -40 mV). In contrast to the swelling-induced current, the activation of Ca(2+)-induced current was less sensitive to voltage compared with its inactivation. Tail current analysis suggested that Cl- channels having a linear current-voltage relation mediate the response to Ca2+. This study indicates that brushed human nasal epithelial cells possess Cl- conductances that are regulated by cell swelling and Ca2+ and that they represent a useful in vitro model for studying ion transport in epithelia.  相似文献   

19.
Occasional spontaneous "action potentials" are found in mature hyphae of the fungus Neurospora crassa. They can arise either from low-level sinusoidal oscillations of the membrane potential or from a linear slow depolarization which accelerates into a rapid upstroke at a voltage 5-20 mV depolarized from the normal resting potential (near-180 mV). The "action potentials" are long-lasting, 1-2 min and at the peak reach a membrane potential near-40 mV. A 2-to 8-fold increase of membrane conductance accompanies the main depolarization, but a slight decrease of membrane conductance occurs during the slow depolarization. Two plausible mechanisms for the phenomenon are (a) periodic increases of membrane permeability to inorganic ions, particularly H+ or Cl- and (b) periodic decreases in activity of the major electrogenic pump (H+) or the Neurospora membrane, coupled with a nonlinear (inverse signoid) current-boltage relationship. Identification of action potential-like disturbances in fungi means that such behavior has now been found in all major biologic taxa which have been probed with suitable electrodes. As yet there is no obvious function for the events in fungi.  相似文献   

20.
In order to investigate the possible relations between the anionic permeability and the functions (or the structure ) of the inner mitochondrial membrane, three types of organelles isolated from S. cerevisiae were tested: mitochondria (aerobic culture), promitochondria (anaerobic culture) and CAP-mitochondria (aerobic culture with chloramphenicol added). By using the technique of swelling in isoosmotic potassium salts, after a derermination of the isotonic conditions, it was possible to discriminate between an electrogenic (valinomycin induced) or an electroneutral (both valinomycin and uncoupler induced) translocation. 1) Mitochondria: The permeability properties of mitochondria are energy dependent: a) Respiring mitochondria are permeable to Cl-; Mg2+, however, inhibits this translocation. Phosphate transport seems to be exclusively electrogenic and mersalyl sensitive, but swelling inhibition by that thiol reagent is restored by Mg2+. b) Non respiring mitochondria are impermeable to Cl-, but ATP addition restores the permeability. Thiocyanate permeates as the anionic form and acetate as the undissociated form. The phosphate transport, sensitive to mersalyl, seems to be partially electrogenic. 2) Promitochondria: Deficient of respiratory enzymes but containing an oligomycin sensitive ATPase, they are impermeable to Cl- only when Mg2+ is added. In these conditions, an electrogenic phosphate transport, sensitive to mersalyl, is observed. 3) CAP-mitochondria: Although CAP-mitochondria are cytochrome deficient and contain an oligomycin insensitive ATPase, they are also impermeable to Cl- in presence of Mg2+. As in fully differenciated mitochondria, an electroneutral phosphate entry is observed; Mg2+ is required for mersalyl sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号