首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
人组织激肽释放酶基因家族由KLK1-KLK15构成,编码一组丝氨酸蛋白酶。研究发现KLK基因家族涉及癌细胞的多种生物学功能,且其表达受类固醇激素的调节。人组织激肽释放酶4是丝氨酸蛋白酶家族的一个成员,在多种激素依赖性肿瘤如卵巢癌、前列腺癌、乳腺癌、子宫内膜癌中高表达,且表达量受雌激素、孕激素、雄激素不同程度的调节。近年来很多文献报道人组织激肽释放酶4涉及癌细胞的增殖、上皮间质转化及细胞外基质的降解等过程,可能促进了肿瘤的发生、发展,且与激素依赖性肿瘤的预后不良有关。这些研究显示人组织激肽释放酶4与激素依赖性肿瘤关系密切,是其潜在的肿瘤标记物和治疗靶点,随着研究的进一步深入,有望应用于激素依赖性肿瘤的早期诊断、病程监测和治疗。  相似文献   

3.
Kallikrein gene families have been identified previously in genomes of the human, the mouse, and the rat, and individual kallikrein-like genes have been found in many more species. This study presents the in silico identification of kallikrein gene families in the recently sequenced genomes of four additional mammalian species, the chimpanzee, the dog, the pig, and the opossum. Phylogenies were constructed with gene sequences from all seven mammalian families, using Bayesian analysis, which clarified the evolutionary relationships between these genes. Individual gene sequences, as well as concatenated constructs of multiple sequences, were used. Fifteen kallikrein genes were located in the chimpanzee (Pan troglodytes) genome, while only 14 were identified in the canine (Canis familiaris) genome as no orthologue to human KLK3 was found. Thirteen genes were identified from the pig (Sus scrofa) genome, which lacked homologues to KLK2 and KLK3, and 11 genes, orthologous to human KLK5 through KLK15, were found in the opossum (Monodelphis domestica) genome. No kallikrein genes were identified from the available genome sequences of the chicken (Gallus gallus) or African clawed frog (Xenopus tropicalis). Within the family of kallikreins several subfamilies were suggested by phylogenetic analysis. One consisted of KLK4, KLK5, and KLK14; another of KLK9, KLK11, and KLK15; a third of KLK10 and KLK12; a fourth of KLK6 and KLK13; and finally one of KLK8 and the classical kallikreins (KLK1, KLK2, and KLK3).  相似文献   

4.
Characterization of the human kallikrein locus.   总被引:7,自引:0,他引:7  
The human kallikrein gene family is composed of three members: tissue kallikrein (KLK1), prostate-specific antigen (PA or APS), and human glandular kallikrein-1 (hGK-1 or KLK2). The three genes have previously been isolated and mapped to chromosome 19q13.2-q13.4. Further analysis of an area of 110 kb surrounding the kallikrein genes by CHEF electrophoresis and chromosome walking showed clustering of the three genes. The KLK1 gene is positioned in the opposite orientation of the APS and KLK2 genes in the order KLK1-APS-KLK2. The APS and KLK2 gene are separated by 12 kb; the distance between KLK1 and APS is 31 kb. A CpG island was detected in the region between KLK1 and APS. Preliminary data indicate that this CpG island is located directly adjacent to a gene that is unrelated to the kallikreins and seems to be ubiquitously expressed.  相似文献   

5.
The human tissue kallikrein (KLK) family of serine proteases, which is important in post-translational processing events, currently consists of just three genes-tissue kallikrein (KLK1), KLK2, and prostate-specific antigen (PSA) (KLK3)-clustered at chromosome 19q13. 3-13.4. We identified an expressed sequence tag from an endometrial carcinoma cDNA library with 50% identity to the three known KLK genes. Primers designed to putative exon 2 and exon 3 regions from this novel kallikrein-related sequence were used to polymerase chain reaction-screen five cosmids spanning 130 kb around the KLK locus on chromosome 19. This new gene, which we have named KLK4, is 25 kb downstream of the KLK2 gene and follows a region that includes two other putative KLK-like gene fragments. KLK4 spans 5.2 kb, has an identical genomic structure-five exons and four introns-to the other KLK genes and is transcribed on the reverse strand, in the same direction as KLK1 but opposite to that of KLK2 and KLK3. It encodes a 254-amino acid prepro-serine protease that is most similar (78% identical) to pig enamel matrix serine protease but is also 37% identical to PSA. These data suggest that the human kallikrein gene family locus on chromosome 19 is larger than previously thought and also indicate a greater sequence divergence within this family compared with the highly conserved rodent kallikrein genes.  相似文献   

6.
7.
8.
Clements JA 《Biological chemistry》2008,389(12):1447-1454
The genes encoding the kininogenase, glandular tissue kallikrein, in rodents and man were first described in the mid-1980s. Remarkably, they appeared to be part of a much larger highly conserved family of genes (GK) in rodents, but only had two paralogs in man. This discrepancy was not rectified until the late 1990s/2000 with the identification of a cluster of 12 more kallikrein-related (KLK) genes in the human 19q13 locus and the subsequent identification of their rodent homologs. Interestingly, there are remarkable similarities in expression patterns, hormonal regulation and functional attributes of the old (GK) and new (KLK) families which underscore the evolutionary conservation across these loci and species. This historical perspective focuses on the lessons learned from earlier studies on the rodent GK gene families and the striking similarities of some attributes, yet uniqueness, of others. These earlier findings have all contributed to the current status of the KLK serine peptidase-encoding gene family as an exciting source of new biomarkers and therapeutic targets.  相似文献   

9.
The human KLK14 gene is one of the newly identified serine protease genes belonging to the human kallikrein family, which contains 15 members. KLK14 , like all other members of the human kallikrein family, is predicted to encode for a secreted serine protease already found in various biological fluids. This new kallikrein is mainly expressed in prostate and endocrine tissues, but its function is still unknown. Recent studies have demonstrated that KLK14 gene expression is up-regulated in prostate and breast cancer tissues, and that higher expression levels correlate with more aggressive tumors. In this work, we used phage-display substrate technology to study the substrate specificity of hK14. A phage-displayed random pentapeptide library with exhaustive diversity was screened with purified recombinant hK14. Highly specific and sensitive substrates were selected from the library. We show that hK14 has dual activity, trypsin- and chymotrypsin-like, with a preference for cleavage after arginine residues. A SwissProt database search with selected sequences identified six potential human protein substrates for hK14. Two of them, laminin alpha-5 and collagen IV, which are major components of the extracellular matrix, have been demonstrated to be hydrolyzed efficiently by hK14.  相似文献   

10.
The human tissue kallikrein family of serine proteases (hK1-hK15 encoded by the genes KLK1-KLK15) is involved in several cancer-related processes. Accumulating evidence suggests that certain tissue kallikreins are part of an enzymatic cascade pathway that is activated in ovarian cancer and other malignant diseases. In the present study, OV-MZ-6 ovarian cancer cells were stably co-transfected with plasmids expressing hK4, hK5, hK6, and hK7. These cells displayed similar proliferative capacity as the vector-transfected control cells (which do not express any of the four tissue kallikreins), but showed significantly increased invasive behavior in an in vitro Matrigel invasion assay (p<0.01; Mann-Whitney U-test). For in vivo analysis, the cancer cells were inoculated into the peritoneum of nude mice. Simultaneous expression of hK4, hK5, hK6, and hK7 resulted in a remarkable 92% mean increase in tumor burden compared to the vector-control cell line. Five out of 14 mice in the 'tissue kallikrein overexpressing' group displayed a tumor/situs ratio greater than 0.198, while this weight limit was not exceeded at all in the vector control group consisting of 13 mice (p=0.017; chi2 test). Our results strongly support the view that tumor-associated overexpression of tissue kallikreins contributes to ovarian cancer progression.  相似文献   

11.
12.
The amino acid sequence of human prostate-specific antigen (APS) suggests that it is a member of the glandular kallikrein subfamily of serine proteases. In the mouse, the kallikrein-like family is localized in a single locus on chromosome 7, while other serine proteases are distributed over a variety of different chromosomes. To investigate the physical relationship between the human kallikrein genes, we have used in situ hybridization and Southern analysis of a human x mouse somatic cell hybrid panel to map the APS gene to 19q13, concordant with the renal kallikrein KLK1 gene. This finding indicates that APS is a member of a human kallikrein-like gene family with analogous organization to that of the mouse.  相似文献   

13.
Kallikreins are a subgroup of serine proteases with diverse physiological functions. Growing evidence suggests that many kallikreins are implicated in carcinogenesis. By using molecular cloning techniques, we identified a new human kallikrein gene, tentatively named KLK15 (for kallikrein 15 gene). This new gene maps to chromosome 19q13.4 and is located between the KLK1 and KLK3 genes. KLK15 is formed of five coding exons and four introns, and shows structural similarity to other kallikreins and kallikrein-like genes. KLK15 has three alternatively spliced forms and is primarily expressed in the thyroid gland and to a lower extent in the prostate, salivary, and adrenal glands and in the colon testis and kidney. Our preliminary results indicate that the expression of KLK15 is up-regulated by steroid hormones in the LNCaP prostate cancer cell line. The KLK15 gene is also up-regulated, at the mRNA level, in prostate cancer in comparison to normal prostatic tissue. KLK15 up-regulation was found to be associated with more aggressive forms of prostate cancer. This newly discovered gene has the potential of being used as a diagnostic and/or prognostic marker for prostate cancer.  相似文献   

14.
Human kallikrein-related peptidases (KLKs) are a family of 15 serine proteases mainly known for their biomarker utility in various neoplastic and non-neoplastic diseases. Despite significant progress in understanding their clinical application, little is known about the activation mechanism(s) of this important family of enzymes. Emerging evidence indicates that KLKs are activated in a stepwise manner, which is a characteristic of proteolytic cascades. Thus far, KLK cascades have been implicated in semen liquefaction and skin desquamation. Many members of the KLK family have been reported to be active in seminal plasma and/or skin, suggesting their involvement in common proteolytic cascades. KLK14, in particular, is highly active and has recently been proposed as one of the key trypsin-like proteases involved in skin desquamation. This study aims to elucidate a probable cascade-mediated role of KLK14 by 1) examining KLK14-mediated cleavage of a heptapeptide library encompassing activation sites of the 15 KLKs and 2) verifying activation of certain candidate downstream targets of KLK14 (i.e. pro-KLK1, -KLK3, and -KLK11). Heptapeptides encompassing activation motifs of KLK2, -3, -5, and -11 were cleaved with a high (> or =85%) cleavage efficiency. Activation of these candidates was confirmed using full-length recombinant proteins. Pro-KLK11, -KLK3, and -KLK1 were rapidly activated in a concentration-dependent manner. Pro-KLK3 regulation was bidirectional because activation was followed by inactivation via internal cleavage of active KLK3. We are proposing a putative cascade model, operating through multiple KLKs. Identification of novel members of such proteolytic cascades will aid in further defining mechanisms involved in seminal/skin homeostasis.  相似文献   

15.
The tissue kallikrein (KLK) family contains 15 genes (KLK1KLK15) tandemly arranged on chromosome 19q13.4 that forms the largest cluster of contiguous protease genes in the human genome. Here, we provide mechanistic evidence showing that the expression of KLK13, one of the most recently identified family members, is significantly up-regulated in metastatic lung adenocarcinoma. Whilst overexpression of KLK13 resulted in an increase in malignant cell behavior, knockdown of its endogenous gene expression caused a significant decrease in cell migratory and invasive properties. Functional studies further demonstrated that KLK13 is activated via demethylation of its upstream region. The elevated KLK13 protein then enhances the ability of tumor cells to degrade extracellular laminin that, subsequently, facilitates cell metastatic potential in the in vivo SCID mouse xenograft model. KLK13 was also found to induce the expression of N-cadherin to help promote tumor cell motility. Together, these results reveal the enhancing effects of KLK13 on tumor cell invasion and migration, and that it may serve as a diagnostic/prognostic marker and a potential therapeutic target for lung cancer.  相似文献   

16.
Summary Kallikrein-like simple serine proteases are encoded by closely related members of a gene family in several mammalian species. Molecular cloning and genomic Southern blot analysis after conventional and pulsed-field gel electrophoresis indicate that the rat kallikrein gene family comprises 15–20 members, probably closely linked at a single locus. Determination of the nucleotide sequences of the rGK-3,-4, and-6 genes here completes sequence data for a total of nine rat kallikrein family members. Comparison of the rat gene sequences to each other and to those of human and mouse kallikrein family genes reveals patterns of relatedness indicative of concerted evolution. Analysis of nucleotide sequence variants in kallikrein family members shows that most sequence variants are shared by multiple family members; the patterns of shared variants are complex and indicate multiple short gene conversions between family members. Sequence exchanges between family members generate novel assortments of variants in amino acid coding regions that may affect substrate specificity and thereby contribute to the diversity of enzyme activity. Furthermore, small sequence exchanges also may play a role in generating the diverse patterns of tissue-specific expression of rat family members. These analyses indicate an important role for gene conversion in the evolution of the functional diversity of these duplicated genes.  相似文献   

17.
18.
Yousef GM  Diamandis EP 《Genomics》2000,65(2):184-194
In rodents, kallikreins are encoded by a large multigene family but in humans, only three kallikrein genes were thought to exist. Based on the homology between the human and the rodent kallikrein loci, we defined a 300-kb human kallikrein gene region on chromosome 19q13. 3-q13.4. By using linear sequence information, restriction analysis, PCR, and blotting techniques, we were able to construct the first detailed map of the human kallikrein gene locus. Comparative analysis of genes located in this area enabled us to expand the human kallikrein multigene family with some recently identified serine proteases and establish common structural features. We further identified a new kallikrein-like gene, named kallikrein-like gene 3 (KLK-L3; HGMW-approved symbol KLK9). We describe the structural characterization of the KLK-L3 gene, together with its precise chromosomal localization in relation to other kallikreins and its tissue expression pattern and hormonal regulation.  相似文献   

19.
Human tissue kallikreins (KLKs) are the largest family of secreted serine protease endopeptidases encoded by 15 genes clustered on chromosome 19q13.4. Multiple KLK enzymes are co-localized in the upper stratum granulosum and stratum corneum of human epidermis, and in associated appendages such as hair follicle epithelia and sweat glands. Until recently, kallikrein proteolytic activity in the skin was exclusively attributed to KLK5 and KLK7. However, wider cutaneous roles of kallikreins became evident in recent years as the proposal of KLK proteolytic activation cascades emerged. We postulate that these proteolytic enzymes may serve as promiscuous mediators of different skin barrier functions, since they are capable of proteolysing different substrates that govern skin desquamation, antimicrobial defense, and lipid permeability. Growing evidence now attests to potential kallikrein involvement in skin inflammation, pigmentation, and tumor suppression via their ability to target proteinase-activated receptor signaling pathways. Current knowledge on kallikrein roles in skin physiology and pathobiology is described in this review.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号