首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Our purpose was to investigate a method of prolonged desmopressin (DDAVP) infusion in a free roaming rat to better understand the SIADH (syndrome of inappropriate antidiuretic hormone secretion) syndrome in man. DDAVP was infused for 2 weeks from implanted self-powered osmotic minipumps. At the end of that time, plasma DDAVP and urine osmolality were both significantly elevated in experimental as compared with control animals. However, hyponatremia and hypoosmolality, which are characteristic in the SIADH, did not develop. Our observations suggest that inappropriate high antidiuretic hormone levels do not necessarily lead to the SIADH either by urine sodium loss or by water retention if animals decrease water intake.  相似文献   

2.
Water balance is tightly regulated within a tolerance of less than 1 percent by a physiologic control system located in the hypothalamus. Body water homeostasis is achieved by balancing renal and nonrenal water losses with appropriate water intake. The major stimulus to thirst is increased osmolality of body fluids as perceived by osmoreceptors in the anteroventral hypothalamus. Hypovolemia also has an important effect on thirst which is mediated by arterial baroreceptors and by the renin-angiotensin system. Renal water loss is determined by the circulating level of the antidiuretic hormone, arginine vasopressin (AVP). AVP is synthesized in specialized neurosecretory cells located in the supraoptic and paraventricular nuclei in the hypothalamus and is transported in neurosecretory granules down elongated axons to the posterior pituitary. Depolarization of the neurosecretory neurons results in the exocytosis of the granules and the release of AVP and its carrier protein (neurophysin) into the circulation. AVP is secreted in response to a wide variety of stimuli. Change in body fluid osmolality is the most potent factor affecting AVP secretion, but hypovolemia, the renin-angiotensin system, hypoxia, hypercapnia, hyperthermia and pain also have important effects. Many drugs have been shown to stimulate the release of AVP as well. Small changes in plasma AVP concentration of from 0.5 to 4 μU per ml have major effects on urine osmolality and renal water handling.  相似文献   

3.
The syndrome of inappropriate antidiuretic hormone (SIADH) is characterized by euvolemic hyponatremia. Patients with SIADH continue to drink normal amounts of fluid, despite plasma osmolalities well below the physiological osmotic threshold for onset of thirst. The regulation of thirst has not been previously studied in SIADH. We studied the characteristics of osmotically stimulated thirst and arginine vasopressin (AVP) secretion in eight subjects with SIADH and eight healthy controls and the nonosmotic suppression of thirst and AVP during drinking in the same subjects. Subjects underwent a 2-h infusion of hypertonic (855 mmol/l) NaCl solution, followed by 30 min of free access to water. Thirst rose significantly in both SIADH (1.5 +/- 0.6 to 8.0 +/- 1.2 cm, P < 0.0001) and controls (1.8 +/- 0.8 to 8.4 +/- 1.5 cm, P < 0.0001), but the osmotic threshold for thirst was lower in SIADH (264 +/- 5.5 vs. 285.9 +/- 2.8 mosmol/kgH(2)O, P < 0.0001). SIADH subjects drank volumes of water similar to controls after cessation of the infusion (948.8 +/- 207.6 vs. 1,091 +/- 184 ml, P = 0.23). The act of drinking suppressed thirst in both SIADH and controls but did not suppress plasma AVP concentrations in SIADH compared with controls (P = 0.007). We conclude that there is downward resetting of the osmotic threshold for thirst in SIADH but that thirst responds to osmotic stimulation and is suppressed by drinking around the lowered set point. In addition, we demonstrated that drinking does not completely suppress plasma AVP in SIADH.  相似文献   

4.
Six patients with severe hyponatraemia had neurological features of hyponatraemia and pronounced hypoalbuminaemia. All had biochemical features typical of the syndrome of inappropriate secretion of antidiuretic hormone with low serum osmolality and an inappropriately high urinary osmolality. All were given infusions of whole plasma or albumin solution, or both, to restore their plasma albumin concentrations to normal, which led to a dramatic increase in plasma sodium concentrations and serum osmolality, with a concomitant fall in urinary osmolality in all patients. Neurological features were reversed in four patients. It is suggested that severe hypoalbuminaemia is an important cause of appreciable hyponatraemia; infusions of plasma and albumin in such patients may reverse the biochemical and clinical features and should form the basis of management.  相似文献   

5.
Hyperosmolality occurs when there are defects in the two major homeostatic mechanisms required for water balance—thirst and arginine vasopressin (AVP) release. In this situation hypotonic fluids are lost in substantial quantities causing depletion of both intracellular and extracellular fluid compartments. Patients with essential hypernatremia have defective osmotically stimulated AVP release and thirst but may have intact mechanisms for AVP release following hypovolemia. Hyperosmolality can also be seen in circumstances in which impermeable solutes are present in excessive quantities in extracellular fluid. Under these conditions there is cellular dehydration and the serum sodium may actually be reduced by water drawn out of cells along an osmotic gradient.Hyposmolality and hyponatremia may be seen in a variety of clinical conditions. Salt depletion, states in which edema occurs and the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) may all produce severe dilution of body fluids resulting in serious neurologic disturbances. The differential diagnosis of these states is greatly facilitated by careful clinical assessment of extracellular fluid volume and by determination of urine sodium concentration. Treatment of the hyposmolar syndromes is contingent on the pathophysiology of the underlying disorder; hyponatremia due to salt depletion is treated with infusions of isotonic saline whereas mild hyponatremia in cirrhosis and ascites is best treated with water restriction. Severe symptomatic hyponatremia due to SIADH is treated with hypertonic saline therapy, sometimes in association with intravenous administration of furosemide. Less severe, chronic cases may be treated with dichlormethyltetracycline which blocks the action of AVP on the collecting duct.  相似文献   

6.
In adults, hyperosmolality stimulates central osmoreceptors, resulting in arginine vasopressin (AVP) secretion. Near-term fetal sheep have also developed mechanisms to respond to intravascular hypertonicity with stimulation of in utero AVP release. However, prior studies demonstrating fetal AVP secretion have utilized plasma tonicity changes greater than those required for adult osmotically induced AVP stimulation. We sought to examine near-term fetal plasma osmolality threshold and sensitivity for stimulation of AVP secretion and to correlate plasma hormone levels with central neuronal responsiveness. Chronically instrumented ovine fetuses (130 +/- 2 days) and maternal ewes simultaneously received either isotonic or hypertonic intravascular NaCl infusions. Maternal and fetal plasma AVP and angiotensin II (ANG II) levels were examined at progressively increasing levels of plasma hypertonicity. Intravenous hypertonic NaCl gradually elevated plasma osmolality and sodium levels. Both maternal and fetal plasma AVP increased during hypertonicity, whereas ANG II levels were not changed. Maternal AVP levels significantly increased with a 3% increase in plasma osmolality, whereas fetal plasma AVP significantly increased only at higher plasma osmolality levels (over 6%). Thus the slope of the regression of AVP vs. osmolality was greater for ewes than for fetuses (0.232 vs. 0.064), despite similar maternal and fetal plasma osmolality thresholds for AVP secretion (302 vs. 304 mosmol/kg). Hyperosmolality induced Fos immunoreactivity (FOS-ir) in the circumventricular organs of the fetal brain. FOS-ir was also demonstrated in the fetal supraoptic and paraventricular nuclei (SON and PVN), and double labeling demonstrated that AVP-containing neurons in the SON and PVN expressed Fos in response to intravenous NaCl. These results demonstrate that, in the ovine fetus at 130 days of gestation, neuroendocrine responses to cellular dehydration are functional, although they evidence a relatively reduced sensitivity for AVP secretion compared with the adult.  相似文献   

7.
This study evaluates the effect of prolonged ethanol ingestion on the renal ability to concentrate urine. Suckling Wistar rats born to mothers given ethanol before and during gestation and suckling periods (ethanol-exposed offspring) were used and the results were compared with those obtained from offspring of dams given diets containing no ethanol. Comparisons were also made between progenitors with or without prolonged ethanol ingestion. Body and kidney weights; arginine-vasopressin (AVP) and aldosterone plasma levels; plasma, urine and renal papillary osmolality; urine outflow; kidney AQP2, AQP3 and AQP4 expression and diencephalon AVP mRNA expression were determined. As compared with control offspring, the ethanol-exposed offspring present i) lower body and kidney weights; ii) lower urine outflow; iii) higher renal AQP2 and AQP3 mRNA; iv) higher renal AQP2 protein content and v) higher urine and renal papillary osmolality. These changes were also observed in the ethanol-treated progenitors, although they were of smaller magnitude. Plasma osmolality, renal AQP4 mRNA, AVP plasma levels and diencephalon AVP mRNA expression were not affected by the ethanol treatment. Plasma levels of aldosterone were only significantly increased in the ethanol-exposed suckling rats. It is concluded that maternal ethanol ingestion before and during gestation and suckling periods affects the renal function of the offspring, up-regulating renal AQP2 expression by an AVP-independent mechanism. Ethanol-treated progenitors manifest similar renal changes, although of lesser magnitude than the offspring.  相似文献   

8.
Central nervous system-derived adrenomedullin (AM) has been shown to be a physiological regulator of thirst. Administration of AM into the lateral ventricle of the brain attenuated water intake, whereas a decrease in endogenous AM, induced by an AM-specific ribozyme, led to exaggerated water intake. We hypothesized that central AM may control fluid homeostasis, in part by regulating plasma arginine vasopressin (AVP) levels. To test this hypothesis, AM or a ribozyme specific to AM was administered intracerebroventricularly, and alterations in plasma AVP concentrations were examined under basal and stimulated (hypovolemic) conditions. Additionally, we examined changes in blood volume, kidney function, and plasma electrolyte and protein levels, as well as changes in plasma aldosterone concentrations. Intracerebroventricular administration of AM increased plasma AVP levels, whereas AM ribozyme treatment led to decreased plasma AVP levels under stimulated conditions. During hypovolemic challenges, AM ribozyme treatment led to an increased loss of plasma volume compared with control animals. Although overall plasma osmolality did not differ between treatment groups during hypovolemia, aldosterone levels were significantly higher and, consequently, plasma potassium concentrations were lower in AM ribozyme-treated rats than in controls. These data suggest that brain-derived AM is a physiological regulator of vasopressin secretion and, thereby, fluid homeostasis.  相似文献   

9.
The efficacy of oral urea in producing a sufficiently high osmotic diuresis was tested in seven patients with the syndrome of inappropriate secretion of antidiuretic hormone. In all patients urea corrected the hyponatraemia despite a normal fluid intake. Five patients were controlled (serum sodium concentration greater than 128 mmol(mEq)/1) with a dose of 30 g urea daily, and two with 60 g daily. The patients who needed 30 g drank 1-2 1 of fluid daily, while those who needed 60 g drank up to 3.1 per day. No major side effects were noted, even after treatment periods of up to 270 days. These findings suggest that urea is a safe and efficacious treatment of the syndrome of inappropriate secretion of antidiuretic hormone.  相似文献   

10.
The goal of this study was to create a realistic and quantitative simulation of vasopressin (AVP) secretion under iso-osmotic and short-term challenged plasma osmolality. The relationship between AVP concentration ([AVP]) and plasma osmolality was computed using a sophisticated and integrated model that chronologically simulates (1) the overall firing rate of the hypothalamus’ magnocellular neuronal (MCN) population, (2) the propagation of the spike activity down the axons, (3) the fatigue and facilitation mechanisms of AVP release at the axon terminals and (4) the [AVP] pharmacodynamics based on the trains of AVP release. This global simulation predicted that the differential MCN sensitivity to dynorphin would be the most critical mechanism underlying the individual variability of MCN firing behaviors (silence, irregular, phasic and continuous firing patterns). However, at the level of the MCN population, the simulation predicted that the dynorphin factor must be combined with the distribution of the resting membrane potentials among the MCNs to obtain a realistic overall firing rate in response to a change in osmolality. Moreover, taking advantage of the integrated model, the simulation predicted that the selective removal of the frequency-dependent facilitation of AVP secretion has a major impact on the overall [AVP]-to-osmolality relationship (mean absolute change of 2.59?pg/ml); the action potential propagation failure, while critical, has a smaller quantitative impact on the overall [AVP] (0.58?pg/ml). The present integrated model (from a single MCN to a quantitative plasma [AVP]) improves our knowledge of the mechanisms underlying overall MCN firing and AVP excitation-secretion coupling.  相似文献   

11.
It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP mRNA and peptide level, AVP plasma concentration, and AVP-regulated renal transport protein abundances were measured. In male COX-2(-/-), basal urine output and water intake were elevated while urine osmolality was decreased compared with WT. Water deprivation resulted in lower urine osmolality, higher plasma osmolality in COX-2(-/-) mice irrespective of gender. Hypothalamic AVP mRNA level increased and was unchanged between COX-2(-/-) and WT after WD. AVP peptide content was higher in COX-2(-/-) compared with WT. At baseline, plasma AVP concentration was elevated in conscious chronically catheterized COX-2(-/-) mice, but after WD plasma AVP was unchanged between COX-2(-/-) and WT mice (43 ± 11 vs. 70 ± 16 pg/ml). Renal V2 receptor abundance was downregulated in COX-2(-/-) mice. Medullary interstitial osmolality increased and did not differ between COX-2(-/-) and WT after WD. Aquaporin-2 (AQP2; cortex-outer medulla), AQP3 (all regions), and UT-A1 (inner medulla) protein abundances were elevated in COX-2(-/-) at baseline and further increased after WD. COX-2(-/-) mice had elevated plasma urea and creatinine and accumulation of small subcapsular glomeruli. In conclusion, hypothalamic COX-2 activity is not necessary for enhanced AVP expression and secretion in response to water deprivation. Renal medullary COX-2 activity negatively regulates AQP2 and -3. The urine concentrating defect in COX-2(-/-) is likely caused by developmental glomerular injury and not dysregulation of AVP or collecting duct aquaporins.  相似文献   

12.
In the present study, we have examined in Wistar rats the effects of food or water deprivation of 3 days on the hypophyso-adrenal axis, vasopressinergic system and activity of A1 noradrenergic brain stem cell group, which is involved in the control of the hypothalamic neuro-endocrine activity. Levels of adrenocorticotropic hormone (ACTH) and vasopressin (AVP) were determined by radio-immunoassay, and corticosterone level was determined by fluorimetric method. Plasma levels of ACTH and corticosterone were greatly increased in both groups of rats. In water-deprived rats, plasma AVP (13.83 +/- 1.63 vs. 3.03 +/- 0.23 pg/ml) and osmolality levels were significantly elevated with a marked decrease of AVP hypophysis content (272 +/- 65 vs. 1098 +/- 75 ng/mg protein), but not in food-deprived rats in which osmolality did not change and AVP remained stocked (2082 +/- 216 ng/mg protein) in the hypophysis without release in the plasma (1.11 +/- 0.23 pg/ml). These observations indicated that both food-deprivation and water-deprivation stimulated the pituitary adrenal axis thereby suggesting a stress state. AVP production is stimulated both by fluid and food restriction but is secreted with differential effects: during food restriction AVP secretion is limited to supporting the hypothalamic pituitary-adrenal system.  相似文献   

13.
Radioimmunoassay of plasma arginine-vasopressin (AVP) in regularly dialyzed patients with chronic renal insufficiency revealed a parallel increase of AVP and plasma osmolality (POsm) before dialysis (4.16 +/- 0.36 pg/ml and 312.6 +/- 1.80 mOsm/1) and their parallel declin to the normal range (1.93 +/- 0.27 pg/ml and 292.0 +/- 1.27 mOsm/1) during dialysis. Plasma AVP correlated with POsm before and after dialysis (r = 0.611 and 0.453, p less than 0.01 and less than 0.05 respectively). The increase of AVP before dialysis was lower than would correspond to the rise of POsm and lower than that recorded in healthy subjects during dehydration. Statistical correlation between plasma AVP and indicators of body fluid volume changes between or during dialysis were not proved. We found statistical correlation between the mean blood pressure and AVP before dialysis (r = 0.468, p less than 0.05). These findings suggest that in chronic renal insufficiency changes of POsm remain primary regulating factor of AVP secretion. The expansion of extracellular fluid volume has probably only a modifying effect. It remains to be elucidated whether the revealed statistical relationship between the mean blood pressure and AVP before dialysis plays also a pathogenetic role in the development of hypertension in chronic renal insufficiency.  相似文献   

14.
Aquaporin-2, a water-channel protein, is known to increase water permeability due to vasopressin binding to V2 receptors at the renal collecting duct and is excreted into the urine. It is still unclear whether a hyponatremic state is caused by vasopressin-dependent aquaporin-2 in patients clinically diagnosed with the syndrome of inappropriate secretion of antidiuretic hormone. To determine this, we measured urinary aquaporin-2 and vasopressin by radioimmunoassay in normonatremic or hyponatremic patients after cerebral infarction and in healthy controls. In the normonatremia group, urinary aquaporin-2 and plasma AVP levels were higher than in controls. In the hyponatremia group, plasma AVP was relatively high despite low plasma osmolality in each patient. However, urinary aquaporin-2 in hyponatremia was significantly increased when compared with the other two groups. In conclusion, AQP-2 increment does not directly reflect non-osmotic AVP secretion in a hyponatremic state. This result indicates that the urinary excretion of AQP-2 is not only AVP-dependent in hyponatremic states.  相似文献   

15.
In a patient with hyponatraemia associated with acute idiopathic polyneuritis plasma concentrations of antidiuretic hormone increased when hypertonic saline was infused intravenously, and urine osmolality rose concomitantly. A water load was excreted normally, while the plasma remained extremely hypo-osmolal. It is concluded that osmoregulation was functioning normally but was set abnormally low, possibly owing to a disturbance of the peripheral volume receptors.  相似文献   

16.
Chronic consumption of ethanol in adult rats and humans leads to reduced AVP-producing neurons, and prenatal ethanol (PE) exposure has been reported to cause changes in the morphology of AVP-producing cells in the suprachiasmatic nucleus of young rats. The present studies further characterize the effects of PE exposure on AVP in the young adult rat, its hypothalamic synthesis, pituitary storage, and osmotically stimulated release. Pregnant rats were fed a liquid diet with 35% of the calories from ethanol or a control liquid diet for days 7-22 of pregnancy. Water consumption and urine excretion rate were measured in the offspring at 60-68 days of age. Subsequently, the offspring were infused with 5% NaCl at 0.05 ml.kg(-1).min(-1) with plasma samples taken before and at three 40-min intervals during infusion for measurement of AVP and osmolality. Urine output and water intake were approximately 20% greater in PE-exposed rats than in rats with no PE exposure, and female rats had a greater water intake than males. The relationship between plasma osmolality and AVP in PE-exposed rats was parallel to, but shifted to the right of, the control rats, indicating an increase in osmotic threshold for AVP release. Pituitary AVP was reduced by 13% and hypothalamic AVP mRNA content was reduced by 35% in PE-exposed rats. Our data suggest that PE exposure can cause a permanent condition of a mild partial central diabetes insipidus.  相似文献   

17.
Vasopressin (AVP) in acute experiments has been shown to influence cardiovascular reflexes, but the effect of a more prolonged administration of AVP on the sympathetic nervous system has not been investigated. Long-Evans rats were treated for 7 days with AVP (Pitressin tannate in oil, with single daily doses of 100 or 500 mU.100 g-1, s.c.) to determine whether AVP alters norepinephrine (NE) turnover in kidney, intestine, or skeletal muscle. Control rats were given equal doses of peanut oil daily. NE turnover was determined by measuring the decline in tissue levels of NE for 8 h after inhibition of tyrosine hydroxylase with alpha-methyl-p-tyrosine (300 mg.kg-1, i.p. every 4 h). Measurements of water intake, urine output, and urine osmolality showed that chronic administration of the high dose, but not the low dose, of AVP produced maintained increases in urine osmolality and decreases in water intake and urine output. Body weight, plasma osmolality, plasma electrolytes, and hematocrit were not significantly altered by AVP treatment, but mean arterial pressure was elevated significantly (control, 105 +/- 3 mmHg versus AVP, 119 +/- 4 mmHg, p less than 0.05) (1 mmHg = 133.3 Pa) in the high dose group. Plasma renin activity was decreased slightly, but significantly in rats treated with the high dose of AVP. Compared with results in control animals, there were no statistically significant changes in NE turnover after chronic administration of either the low or the high dose of AVP. The results indicate that administration of AVP for 7 days to rats in normal fluid balance does not result in a decrease in NE turnover in peripheral organs.  相似文献   

18.
The objective of this study was to analyze the clinical features of brain trauma associated syndrome of inappropriate antidiuretic hormone secretion. A retrospective analysis was performed for the electrolytes and osmolality of blood and urine samples of brain injury patients, which have been collected in our department since last 20 years. Four cases of brain injury patients met the criteria of SIADH, and three of them were cured but one patient died. In conclusion, the pathogenesis and treatment of SIADH associated with brain injury are different from hyponatremia. Early diagnosis and treatment can reduce the morbidity and mortality of patients with traumatic brain injury.  相似文献   

19.
20.
The influence of treadmill or swimming exercise on resting values of plasma and brain arginine vasopressin (AVP), and plasma sodium, potassium, osmolality and proteins was studied after 5 weeks of training using female Wistar rats. The duration of daily training sessions was progressively increased to reach 6 h/day for swim training (S) and 3 h/day for treadmill running (T). Compared to their untrained controls, treadmill and swim training were respectively associated with: a significant lower body weight; a decreased plasma AVP (36.4% for T and 47.4% for S) and hypothalamic AVP (20% for T and 16% for S); a higher hypophyseal AVP (145% for T and 36.3 for S); a decreased plasma osmolality (6.7% for T and 6.1% for S), sodium (1.2% for both) and potassium (15% for T and 22.4% for S); and no change in protein concentration. For T, rectal temperature increased (38.5 +/- 0.20 to 39.7 +/- 0.5) and for S rectal temperature decreased from 38.6 +/- 0.12 to 37.74 +/- 0.10). The differences observed in AVP contents of the pineal and Harderian glands (enhanced only in the treadmill groups) could be explained by the supposed role of these glands in thermoregulation. Two conclusions could be drawn from this study: there are no parallel changes in the hypothalamo-hypophyseal system (where AVP plays its endocrine role) and the brain (where AVP is a neurotransmitter); plasma changes could be explained by an extracellular fluid expansion with Na and K loss leading to a decrease in AVP secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号