首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Rates of uptake of 14C-labelled inorganic carbon were measured for whole Chara hispida plants, detached parts of the shoot and isolated (split-chamber technique) apices, lateral branchlets and rhizoid—node complexes. The rates of inorganic carbon uptake by the rhizoid—node complex expressed per gram fresh weight whole plant were three to four orders of magnitude less than the uptake for the whole plant. Up to 70% of the carbon taken up by the rhizoid—node complex was translocated to the shoot. After 12 h exposure to 14C-labelled inorganic carbon the concentration of 14C was greater in apices than in uppermost or central internodal cells and in all lateral branchlets, regardless of whether label was supplied to the whole plant or isolated rhizoid—node complexes. Measurement of inorganic carbon uptake by detached internodal cells and detached and isolated apices and lateral branchlets showed that lateral branchlets had the greatest rates of inorganic carbon uptake. During 12 h exposure to 14C, isolated lateral branchlets translocated to the attached shoot 55% of the labelled carbon taken up; for isolated apices this value was only 13%. It is concluded that it is highly unlikely that the rhizoid of Chara hispida could acquire a significant fraction of the whole plant requirement for inorganic carbon and that apices are sink regions for photosynthate while lateral branchlets are source regions.  相似文献   

2.
Abstract The uptake of ammonium and nitrate nitrogen by cultured plants of the green freshwater alga Chara hispida L. has been compared quantitatively with the contribution of its rhizoidal tissue. In the short-term, the rhizoid takes up 7–20% of the ammonium nitrogen, and about 15% of the nitrate that is taken up by whole plants under similar conditions. The uptake was studied over a range of both temperatures and external concentrations. The apparent activation energy for the uptake of NH4+ and NO3? by the whole plant was found to be 50 kJ mol?1 and 30 kJ mol?1, respectively. For the rhizoid, the values were similar for both nitrogenous ions, 106 kJ mol?1 and 70–100 kJ mol?1. The rhizoidal uptake mechanism for ammonium nitrogen operates more efficiently compared to that in the whole plant. Nitrate is taken up by the rhizoid by a mechanism with a substrate affinity higher than in the plant taken as a whole. The possible ecological significance of the results is discussed.  相似文献   

3.
Abstract The rhizoid of Chara hispida L. made a small contribution to the uptake of inorganic phosphate under laboratory conditions. At 1 mmol m?3 phosphate the rhizoid contributed about 4% to the uptake of the whole plant over 4 h. Under these conditions about half of the phosphate taken up by the rhizoid was translocated into the shoot. The rates of uptake and translocation increased with increasing external phosphate concentrations. When the shoot was in darkness, 32P-translocation from the rhizoid was less than half of that found when the shoot was illuminated. When the rhizoid medium was anaerobic the translocation rate was lower than the rate in aerobic conditions and illumination of the shoot had no effect on the uptake or translocation of phosphate. Translocated 32P accumulated in the apical growing regions of the plant. This was first noted in the secondary apices nearest to the rhizoids.  相似文献   

4.
Increasing nitrogen (N) deposition in subtropical forests in south China causes N saturation, associated with significant nitrate (NO3?) leaching. Strong N attenuation may occur in groundwater discharge zones hydrologically connected to well‐drained hillslopes, as has been shown for the subtropical headwater catchment “TieShanPing”, where dual NO3? isotopes indicated that groundwater discharge zones act as an important N sink and hotspot for denitrification. Here, we present a regional study reporting inorganic N fluxes over two years together with dual NO3? isotope signatures obtained in two summer campaigns from seven forested catchments in China, representing a gradient in climate and atmospheric N input. In all catchments, fluxes of dissolved inorganic N indicated efficient conversion of NH4+ to NO3? on well‐drained hillslopes, and subsequent interflow of NO3? over the argic B‐horizons to groundwater discharge zones. Depletion of 15N‐ and 18O–NO3? on hillslopes suggested nitrification as the main source of NO3?. In all catchments, except one of the northern sites, which had low N deposition rates, NO3? attenuation by denitrification occurred in groundwater discharge zones, as indicated by simultaneous 15N and 18O enrichment in residual NO3?. By contrast to the southern sites, the northern catchments lack continuous and well‐developed groundwater discharge zones, explaining less efficient N removal. Using a model based on 15NO3? signatures, we estimated denitrification fluxes from 2.4 to 21.7 kg N ha?1 year?1 for the southern sites, accounting for more than half of the observed N removal. Across the southern catchments, estimated denitrification scaled proportionally with N deposition. Together, this indicates that N removal by denitrification is an important component of the N budget of southern Chinese forests and that natural NO3? attenuation may increase with increasing N input, thus partly counteracting further aggravation of N contamination of surface waters in the region.  相似文献   

5.
Rapid changes in turgor pressure (P:) and temperature (T:) are giving new information about the mechanisms of plant growth. In the present work, single internode cells of the large-celled alga Chara corallina were used as a model for plant growth. P was changed without altering the chemical environment of the wall while observing growth without elastic changes. When P: was measured before any changes, the original growth rate bore no relationship to the original P. However, if P of growing cells was decreased, growth responded immediately without evidence for rapid changes in wall physical properties. Growth occurred only above a 0.3 MPa threshold, and increasing P caused small increases in growth that became progressively larger as P rose, resulting in a curvilinear response overall. The small changes in growth close to the threshold may explain early failures to detect these responses. When T was lowered, the elastic properties of the cell were unaffected, but growth was immediately inhibited. The lower T caused P to decrease, but returning P to its original value did not return growth to its original rate. The decreased P at low T occurred because of T effects on the osmotic potential of the cell. At above-normal P, growth partially resumed at low T Therefore, growth required a P-sensitive process that was also T-sensitive. Because elastic properties were little affected by T, but growth was markedly affected, the process is likely to involve metabolism. The rapidity of its response to P and T probably excludes the participation of changes in gene expression.  相似文献   

6.
Morphological characters of Chara baltica, C. hispida, C. horrida, and C. rudis from different localities in Central Europe and Scandinavia were analyzed. The plants were preliminarily classified using specific qualitative features into four species: C. baltica, C. hispida, C. horrida, and C. rudis. Of the 14 characters, all were used in principal-component and cluster analyses, and 12 were applied in a discriminant analysis. In the discriminant analysis, the most useful characters for distinguishing particular species were selected. The methods (canonical discriminant and canonical analyses) used herein offered good differentiation between brackish water species C. horrida and C. baltica and fresh water species C. hispida and C. rudis. The analysis showed that the two morphologically very similar species C. hispida and C. rudis are only partially distinguished.  相似文献   

7.
8.
Our understanding of how saprotrophic and mycorrhizal fungi interact to re-circulate carbon and nutrients from plant litter and soil organic matter is limited by poor understanding of their spatiotemporal dynamics. In order to investigate how different functional groups of fungi contribute to carbon and nitrogen cycling at different stages of decomposition, we studied changes in fungal community composition along vertical profiles through a Pinus sylvestris forest soil. We combined molecular identification methods with 14C dating of the organic matter, analyses of carbon:nitrogen (C:N) ratios and 15N natural abundance measurements. Saprotrophic fungi were primarily confined to relatively recently (< 4 yr) shed litter components on the surface of the forest floor, where organic carbon was mineralized while nitrogen was retained. Mycorrhizal fungi dominated in the underlying, more decomposed litter and humus, where they apparently mobilized N and made it available to their host plants. Our observations show that the degrading and nutrient-mobilizing components of the fungal community are spatially separated. This has important implications for biogeochemical studies of boreal forest ecosystems.  相似文献   

9.
The supply of N in alpine soils is influenced by environmental factors (freeze-thaw, drying-rewetting, release of N from winter snowpack) which lead to a pulsed nature in plant N availability. To address the ability of alpine species to acquire N and grow when N is supplied in a pulsed manner, six alpine graminoid species, 3 sedges (Cyperaceae) and 3 grasses (Poaceae), were grown under 3 treatments: low and high N supply applied 3 times weekly, and a pulsed N supply applied once weekly at the same concentration as the high N treatment, but with the same total N supply as the low N treatment. Growth, biomass allocation, and N uptake were the same in all species for plants grown under a pulsed N treatment relative to a constant N supply with the same amount of total N. Root:shoot ratios and uptake of experimentally applied 15N indicated there were no adjustments in growth allocation or root uptake capacity in the plants to enhance the uptake of N when supplied in a pulsed relative to a more constant supply. The fertility of the site from which the graminoids were collected did not influence the plants' ability to respond to a high versus a low N supply, but instead growth form was more important. Grasses exhibited variation in growth, biomass allocation, and N uptake in response to changes in N supply, while sedges did not.  相似文献   

10.
模拟氮沉降对杂草生长和氮吸收的影响   总被引:6,自引:3,他引:6  
以杂草早熟禾、黑麦草、野燕麦、天蓝苜蓿、白车轴草、北美车前、婆婆纳、无芒稗、牛筋草和刺苋为试验材料,以4.0g·m-2·yr-1的N输入为模拟氮沉降浓度,研究了不同杂草功能类群对模拟氮沉降的响应.结果表明,模拟氮沉降处理下,杂草的生物量(总生物量、地上部分生物量、根生物量)呈增加趋势,但不同功能类群对氮增加的响应明显不同,C4禾本科、C3豆科及C3禾本科植物的生物量受到氮沉降的显著促进,但C3非禾本科和C4非禾本科植物的生物量则受氮沉降的影响不显著;不同功能类群的根冠比、植株含氮及植株吸收氮的总量对模拟氮沉降的响应无明显规律,但物种间差异显著.氮沉降提高野燕麦和北美车前的生物量的根冠比,但对其他生物种类没有显著影响.没有发现氮沉降对植物体内的含氮量有显著的影响,但氮沉降却显著地提高了除刺苋、早熟禾及婆婆纳之外的所有杂草物种对N的摄收.由于物种对氮沉降的响应不同,未来氮沉降的增加将加速杂草群落组成的变化.  相似文献   

11.
Net nitrogen (N) mineralization in situ and N mineralization potential (N0) over one complete year (1986–1987) were examined for a conventionally managed silage cornfield that received at least 235 kg fertilizer N ha-1. Net N mineralization at the site, measured by sequential in situ polyethylene-bag incubations, totaled –54 kg N ha-1 yr-1, and –31 kg N ha-1 over the May-to-August growing season. Nitrogen mineralization potential of the soil organic matter (SOM), measured by laboratory anaerobic incubations, was positive uniformly and varied with month of sample collection. The soil gained 72 kg inorganic N ha-1 from April to October, principally because of a fall manuring, only 7 kg N ha-1 from April to September. The in situ incubations, likely more representative of the balance between N mineralization and immobilization under N-fertilized conditions, suggest that SOM at the site is accumulating N.Contribution from the Department of Forestry and Wildlife Management, University of Massachusetts, Amherst, MA 01003, USA.Contribution from the Department of Forestry and Wildlife Management, University of Massachusetts, Amherst, MA 01003, USA.  相似文献   

12.
Summary The effects of water regime on the performance of rice were investigated in a greenhouse experiment and two field experiments. The greenhouse experiment involved four water regimes (continuous flooding, and soil drying for 16 days — begun 2, 5, and 8 weeks after transplanting — followed by reflooding), four soils, and 0 and 100 mg N/kg. Soil drying raised the redox potentials of all soils beyond the aerobic threshold. Averaged for soils and N levels, yields from treatments in which soil drying was begun at 2 and 5 weeks after transplanting were lower than that from the continuously flooded treatment, but the simple effects of soil drying on yield and N uptake depended on the soil and the growth stage of the plant. None of the soil-drying treatments had adverse effects in the soil high in N but soil drying at 2 and 5 weeks after transplanting had adverse effects in the soil low in N. The field experiments tested the effects of three water regimes (continuous flooding, alternate drying and flooding every 2 weeks, and soil drying for 2 weeks at 6 weeks after transplanting following by reflooding), and 0, 50, 100, and 150 kg N/ha on a nearly neutral clay soil, during two seasons. None of the soil-drying treatments depressed growth, yield, or N uptake by rice at any level of N in either season. Nitrate was absent after drying, so denitrification was not possible on subsequent flooding. The adverse effects on yield of alternate flooding and drying, attributed to nitrification-denitrification, may be insignificant in wetland fields carrying an actively growing rice crop.  相似文献   

13.
Atmospheric acid deposition affects many streams worldwide, leading to decreases in pH and in base cations concentrations and increases in aluminum (Al) concentration. These changes in water chemistry induce profound changes in the diversity, structure and activity of biological communities and in ecosystem processes. However, monitoring programs rely only on chemical and structural indicators to assess stream integrity. Nevertheless, the ability of ecosystems to provide services rely on their functional integrity and thus ecosystem processes should be considered in monitoring programs. We assessed the potential for leaf litter decomposition, a fundamental ecosystem process in forest streams, to be used as a bioassessment tool of acidification effects on stream ecosystem functioning. In a field study in the Vosges Mountains (North-eastern France), using three leaf litter species (Alnus glutinosa, Acer pesudoplatanus and Fagus sylvatica) enclosed in fine and coarse mesh bags and incubated in streams flowing over granite or sandstone bedrock along an acidification gradient, we assessed if the response of litter decomposition to acidification depended on litter species, mesh size, parent lithology and acidification level. In a meta-analysis of 17 primary studies on the effect of acidification on leaf litter decomposition, reporting 67 acidified – reference stream comparisons, we assessed the consistency in the response of litter decomposition to acidification cross studies and the robustness of litter decomposition to be used as a bioassessment tool. Both the field study and meta-analysis revealed an overall strong inhibition (>60%) of leaf litter decomposition in acidified streams likely resulting from previously well described altered decomposer community structure and activity. No effect of leaf species was found in the field study, while in the meta-analysis inhibition of leaf litter decomposition in acidified streams was stronger for Fagus than for Acer, Quercus and Liriodendron. However, differences among leaf species in the meta-analysis might have been confounded by other differences among studies. The response of leaf litter decomposition to acidification was stronger in coarse than in fine mesh bags, indicating strong impairment of detritivore community structure and activity. The magnitude of inhibition also depended on parent lithology, but this is likely related to differences in the degree of acidification. Indeed, the magnitude of the inhibition of leaf litter decomposition increases with increases in H+ in Al concentration. Litter decomposition has the potential to be used as a bioassessment tool of acidification effects in streams since it shows consistent response to acidification across regions and is robust to experimental choices.  相似文献   

14.
15.
Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic culture was measured daily during a 63 d period of reproductive development between the first florally inductive photoperiod and [unknown word] seed growth. Removal of NO3- from a replenished solution containing 1.0 mol m-3 NO3- was determined by ion chromatography. Uptake of NO3- continued throughout reproductive development. The net uptake rate of NO3- cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floral stage and about 6 d during the fruiting stage. Coupled with increasing concentrations of carbon and C : N ratios in tissues, the oscillations in net uptake rates of NO3- are evidence that the demand for carbohydrate by reproductive organs is contingent on the availability of nitrogen in the shoot pool rather than that the demand for nitrogen follows the flux of carbohydrate into reproductive tissues.  相似文献   

16.
Aims Intercropping legumes and non-legumes may affect the root growth of both components in the mixture, and the non-legume is known to be strongly favored by increasing nitrogen (N) supply. The knowledge of how root systems affect the growth of the individual species is useful for understanding the interactions in intercrops as well as for planning cover cropping strategies. The aim of this work was (i) to determine if different levels of N in the topsoil influence root depth (RD) and intensity of barley and vetch as sole crops or as an intercropped mixture and (ii) to test if the choice of a mixture or the N availability in the topsoil will influence the N uptake by deep roots.Methods In this study, we combined rhizotron studies with root extraction and species identification by microscopy with studies of growth, N uptake and 15 N uptake from deeper soil layers, for studying the root interactions of root growth and N foraging for barley (Hordeum vulgare L.) and vetch (Vicia sativa L.), frequently grown in mixtures as cover crops. N was added at 0 (N0), 50 (N1) and 150 (N2) kg N ha-1. The roots discrimination relying on the anatomical and morphological differences observed between dicots and monocots proved to be a reliable method providing valuable data for the analysis.Important findings The intercrop and the barley attained slightly higher root intensity (RI) and RD than the vetch, with values around 150 crosses m-1 and 1.4 m, respectively, compared to 50 crosses m-1 and 0.9 m for the vetch. At deep soil layers, intercropping showed slightly larger RI values compared to the sole-cropped barley. The barley and the intercropping had larger root length density (RLD) values (200–600 m m ?3) than the vetch (25–130) at 0.8–1.2 m depth. The topsoil N supply did not show a clear effect on the RI, RD or RLD; however, increasing topsoil N favored the proliferation of vetch roots in the intercropping at deep soil layers, with the barley:vetch root ratio ranging from 25 at N0 to 5 at N2. The N uptake of the barley was enhanced in the intercropping at the expense of the vetch (from ~100mg plant-1 to 200). The intercropped barley roots took up more labeled nitrogen (0.6mg 15 N plant-1) than the sole-cropped barley roots (0.3mg 15 N plant-1) from deep layers.  相似文献   

17.
18.
Abstract Respiration in plants is generally observed to comprise two components: one proportional to the growth rate and the other to the plant dry mass. These components are usually interpreted as being related to the growth of new plant material and maintenance of existing plant material, respectively. By analysing data in this way, the respiratory costs of both structural synthesis and maintenance are observed to be greater in the root than the shoot. This contradicts current understanding of the biochemistry of the processes involved. The basic model is developed to incorporate three additional processes. The first is the cost of ion uptake for plant growth. The second allows for the fact that the site of nitrogen assimilation into amino acids may differ from the site of utilization for protein synthesis: when ammonium is supplied, this is incorporated immediately into amino acids owing to its toxicity to the plants; when nitrate is supplied it may be reduced either in the shoot or root, or both, and subsequently transported around the plant for utilization. The third process to be included is an energy cost for the uptake of ions to balance efflux from the root system. The theory is consistent with experimental observation and provides a means of understanding and interpreting respiration and nitrogen metabolism in plants.  相似文献   

19.
The effectiveness of sphagnum peat, zeolite (clinoptilonite) and basalt in reducing ammonia losses during aerobic manure decomposition was determined in an incubation experiment. Peat placed in the spent air-stream adsorbed all of the ammonia volatilized during the first 8 days of decomposition, and reduced overall ammonia losses by 59%. Zeolite reduced total ammonia losses by 16%, and basalt by 6%.All adsorbents were considerably less effective in reducing ammonia losses when mixed with the manure. Reductions in ammonia losses of 24% and 1.5% were obtained with the peat and zeolite, respectively. The addition of basalt increased losses.Ammonia and ammonium adsorption isotherms were determined for the three materials. The adsorption capacities and affinity terms of the adsorbents calculated from the isotherms, reflected their ability to reduce ammonia losses in the incubation experiment. Zeolite had both the highest affinity for ammonium and the highest ammonium adsorption capacity. The peat had a very high affinity for ammonia and a high adsorption capacity (23.4 mg NH3–N g–1), whereas zeolite and basalt had a much lower adsorption capacity (1.8 and 0.05 mg NH3–N g–1, respectively) compared with their capacity to adsorb ammonium (18.1 and 0.18 mg NH4–N g–1).  相似文献   

20.
水分亏缺和施氮对冬小麦生长及氮素吸收的影响   总被引:11,自引:1,他引:11  
利用管栽试验研究了不同生育期,水分亏缺和施氮对冬小麦生长及氮素吸收的影响.结果表明:任何生育期水分亏缺都会影响冬小麦的株高、叶面积、干物质累积及对氮素的吸收.冬小麦对水分亏缺的敏感期为拔节期,其次为开花期、灌浆期和苗期.苗期干旱后复水对后期生长有显著的补偿效应,开花期适度干旱后复水对生物量形成和氮素吸收有一定的补偿作用,拔节期干旱对小麦的生长影响明显.相同氮肥处理下, 与不亏水处理比较, 苗期水分亏缺、拔节期水分亏缺、开花期水分亏缺、灌浆期水分亏缺的根系氮素积累量分别平均降低25.82%、55.68%、46.14%和16.34%,地上部氮素积累量分别平均降低33.37%、51.71%、27.01%和2.60%.在相同水分处理下冬小麦含氮量、累积吸收氮量都表现为高氮处理(0.3 g N·kg-1FM)>中氮处理(0.2 g N·kg-1FM)>低氮处理(0.1 g N·kg-1FM).水分逆境条件下施用氮肥对冬小麦植株生长和干物质累积及氮吸收具有明显的调节效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号