首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Aquatic Botany》2005,83(1):71-81
The aquatic plant Elodea nuttallii (Planch.) St. John has been shown to express plasticity in the source of inorganic carbon it uses for photosynthesis. An investigation was undertaken to determine what effect the switch from CO2 to HCO3 use had on the growth of E. nuttallii. Plants were grown under reduced CO2 availability that favoured the switch, together with control plants (CO2 at equilibrium with air) that continued to use CO2 only. The extent to which both sets of plants could utilise HCO3 was determined (as the ratio of oxygen evolution at pH 9 and 6.5), and several measures of growth were made. Although reduced CO2 availability produced an increase in HCO3 utilisation, no differences were found in the measured growth of the plants. Therefore, it was possible to estimate, from the difference between the estimated rate of photosynthesis of the plants utilising HCO3 and those using CO2 only, the approximate cost of constructing, maintaining and running the bicarbonate utilisation mechanism in this species as 69 μmol photons m−2 s−1. This value can be used to estimate an irradiance of circa 80 μmol m−2 s−1 below which HCO3 use would not be expected in this species, an irradiance commonly experienced by submerged macrophytes in the field.  相似文献   

2.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

3.
《Aquatic Botany》2007,86(2):107-116
The partitioning of latent heat flux (QE) to vascular plant and moss surface components was assessed for a Sphagnum-dominated bog with a hummock–hollow surface having a sparse canopy of low shrubs. Results from porometry and eddy covariance measurements of QE showed evaporation from the moss surface ranged from greater than 50% of total QE early in the growing season to less than 20% after a dry period toward the end of the growing season. Both soil moisture and vapour pressure deficit (Da) affected this partitioning with drier moss and peat, lower water table, and smaller Da all reducing moss QE. Daily maximum moss QE ranged from greater than 200 W m−2 early in the growing season to less than 100 W m−2 during a dry period. In contrast, vascular contribution to total QE increased over the season from a daily maximum of about 150 W m−2 to 250 W m−2 due to increase in leaf area by leaf replacement and emergence and to drying of the moss surface. Porometry results showed average daily maximum conductance from bog shrubs was near 8 mm s−1. These conductance values were smaller than those reported for vascular plants from more nutrient-rich wetlands. The effect of increases in Da on vascular QE were moderated by decreases in stomatal conductance. At constant available energy, vascular leaf conductance was reduced by as much as 2 mm s−1 and moss surface conductance was enhanced by up to 3 mm s−1 by large Da. Considering vascular and non-vascular water transport characteristics and frequency of water table position and given the observed variations of QE partitioning with water table location and moss and peat water content, it is suggested that modelling efforts focus on how dry hummocks and wet hollows each contribute to QE, especially as related to Da and soil moisture dynamics.  相似文献   

4.
《Aquatic Botany》2004,79(2):111-124
The main aim of this study was to investigate if the charophyte species Chara baltica, Chara canescens (two populations from the Baltic Sea (BS) and the Gulf of Korinth, Greece (GK)), and Lamprothamnium papulosum exhibit different acclimation capacities to irradiance. Growth, photosynthesis and pigment content were examined in the laboratory under six irradiance conditions (35–500 μmol photons m−2 s−1). Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼10 mg fresh weight (FW)) up to 70 μmol photons m−2 s−1 (∼20 mg FW) in C. baltica, from 35 μmol photons m−2 s−1 (∼15 mg FW) up to 380 μmol photons m−2 s−1 (∼145 mg FW) in C. canescens (BS), and up to the highest growth irradiance in algae of L. papulosum (35 μmol: ∼5 mg FW; 500 μmol: ∼20 mg FW). The species were tested for their ability to acclimate to different growth irradiances (Eg) by calculating Pmax (maximum photosynthesis rate at saturating irradiances), α (the efficiency of light utilization at limiting irradiance), and Ek (the light saturation point of photosynthesis, Pmax/α). All species exhibited increasing Pmax with increasing Eg. Whereas both populations of C. canescens increased α with increasing Eg, L. papulosum and C. baltica did not acclimate α at all. Ek, the irradiance at which photosynthesis ceased to be light-limited, was constant for all Chara species within the range of irradiances tested. Chl a/Chl b ratios of all species were constant over the whole range of Eg. Chl a/carotenoid ratios were constant in C. baltica, whereas Chl a/carotenoid ratios in L. papulosum and C. canescens (BS) decreased from 250 and 70 μmol photons m−2 s−1 upwards, respectively. Pigmentation analysis showed that Chl a/carotenoid acclimation was mainly caused by species-specific capacity to raise the content of lutein and carotene (C. canescens (BS), C. canescens (GK)) and xanthophyll cycle pigments (XCP; L. papulosum). The non-photochemical quenching (NPQ) capacities of L. papulosum, C. canescens (BS), and C. canescens (GK) were dependent from preacclimation status of algae, whereas NPQ of C. baltica was independent from growth irradiance.Our results indicate that C. baltica and C. canescens (BS) were light saturated within the chosen irradiances, whereas C. canescens (GK) and L. papulosum did not reach their limits of high-light acclimation. The photosynthetic pigments lutein, α- and β-carotene are suggested to act as photo-protective pigments in L. papulosum and C. canescens.  相似文献   

5.
We aimed to develop a new method for evaluating the drag in front-crawl swimming at various velocities and at full stroke. In this study, we introduce the basic principle and apparatus for the new method, which estimates the drag in swimming using measured values of residual thrust (MRT). Furthermore, we applied the MRT to evaluate the active drag (Da) and compared it with the passive drag (Dp) measured for the same swimmers. Da was estimated in five-stages for velocities ranging from 1.0 to 1.4 m s−1; Dp was measured at flow velocities ranging from 0.9 to 1.5 m s−1 at intervals of 0.1 m s−1. The variability in the values of Da at MRT was also investigated for two swimmers. According to the results, Da (Da = 32.3 v3.3, N = 30, R2 = 0.90) was larger than Dp (Dp = 23.5 v2.0, N = 42, R2 = 0.89) and the variability in Da for the two swimmers was 6.5% and 3.0%. MRT can be used to evaluate Da at various velocities and is special in that it can be applied to various swimming styles. Therefore, the evaluation of drag in swimming using MRT is expected to play a role in establishing the fundamental data for swimming.  相似文献   

6.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

7.
《Aquatic Botany》2005,83(2):129-140
Bisexual populations of the charophyte Chara canescens (Desv. et Loisel. in Loisel., 1810) containing male and female individuals are rarely found. Two experiments were carried out to study whether male and female algae from the same site exhibit different physiological capacities, especially with respect to light acclimation.Algae from two different shore levels and from laboratory cultures acclimated to six irradiance conditions (35–500 μmol photons m−2 s−1) were compared. Field measurements showed that both female and male algae of C. canescens are able to acclimate to daily changes in solar irradiance. The quantum yield of Photosystem II (PSII) decreased with increasing irradiance in the morning and increased with decreasing irradiance in the afternoon. Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼7 mg FW) up to 500 μmol photons m−2 s−1 (∼27 mg FW) in female and male C. canescens. The irradiance saturation point for photosynthesis (Ek) was about 140 μmol m−2 s−1 for both sexes within the whole range of acclimation irradiances. The maximum photosynthesis rate at saturating irradiances (Pmax) of male algae was highest at Ek, whereas Pmax of female algae was highest at 500 μmol photons m−2 s−1. The photosynthetic efficiency in the light-limited range (α) increased in female C. canescens and decreased in male C. canescens. The ratio of the non-photochemical quenching parameter (NPQ) to the relative electron transport rates rETR(MT) increased in both sexes with irradiance, but showed a steeper increase in male than in female algae. Pigment analysis showed similar acclimation pattern for male and female C. canescens. Chl a/Chl b ratios of both sexes were constant over the whole range of Eg, whereas Chl a/carotenoid ratios in male and female C. canescens decreased from 70 μmol photons m−2 s−1 upwards. Pigment analysis pointed out that the carotenes α-, β- and γ-carotene were more prominent in male than in female algae.Our results indicate that female C. canescens are more efficient in light acclimation than male algae from the same site. Nevertheless, further investigations of bisexual C. canescens populations resolving CO2-uptake mechanisms and/or genetic differences are needed.  相似文献   

8.
Different plant species make use of resource gradients such as light in different ways. First, plant species specialize in using different parts of the gradient, resulting in niche partitioning, Second, within the section of the gradient used by a species, plants respond to a different resource supply by plasticity. Our study addressed both of these strategies, with the main objective to relate mean responses and plasticity indices of seedlings of woody species to species characteristics such as leaf habit and to variation in branch lengths and local frequency of adult trees in forest communities.A greenhouse experiment with 36 deciduous and 35 evergreen subtropical tree and shrub species was carried out to test the influence of light and nutrient availability on trait expression and plasticity of the species. The greenhouse responses of seedlings were compared with adult individuals in the field, based on a set of 46 species that occurred also in the 27 permanent plots in a secondary subtropical broadleaved forest in Zhejiang Province (SE-China).In the greenhouse experiment, most variables showed significant differences between unshaded (250 μE m−2 s−1) and shaded (10 μE m−2 s−1) treatments as well as between high and low nutrient supply. Deciduous species were more plastic than evergreen species in their response to light. No significant correlations were detected in mean responses and plasticity between juvenile plants in the greenhouse and adult trees in the field. However, some trait values such as biomass and node density as well as plasticity of several traits were positively related to the species’ abundance in the field, suggesting that locally abundant species tend to be less “plastic” than locally rare species.  相似文献   

9.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

10.
《Aquatic Botany》2005,83(3):161-174
The photosynthetic and repiratory metabolism of Zostera marina and maerl communities was compared, in the same area of the Bay of Brest in March–April, using benthic chambers. PE curves for both oxygen and carbon were established for bottom irradiances between 0 and 525 μmol m−2 s−1. An exponential function was fitted to calculate daily production. Community metabolic quotients did not differ for maerl and seagrass beds. Community photosynthetic quotients were significantly higher (1.19) whereas community respiratory quotients were lower (0.70) than 1. Maerl and seagrass bed PE curves mainly differed by the minimum saturating irradiance (Ek). Net community production was estimated to 26.8 mmol C m−2 d−1 for Z. marina meadows and 8.6 mmol C m−2 d−1 for maerl beds. The two communities can, therefore, be considered as autotrophic during the March–April period. Community respiration did not differ between Z. marina meadows and maerl beds, with an average value of 53.8 mmol C m−2 d−1 during a day. In similar environmental conditions, the production of maerl beds corresponds to approximately one third that of seagrass meadows. The maerl communities, therefore, form productive ecosystems, relevant to temperate coastal ecosystems functioning.  相似文献   

11.
《Aquatic Botany》2005,83(3):187-192
We investigated the effect of intraspecific competition on growth parameters and photosynthesis of the salt marsh species Atriplex prostrata Boucher in order to distinguish the effects of density-dependent growth inhibition from salt stress. High plant density caused a reduction of 30% in height, 82% in stem dry mass, 80% in leaf dry mass, and 95% in root dry mass. High density also induced a pronounced 72% reduction in leaf area, 29% decrease in length of mature internodes and 50% decline in net photosynthetic rate. The alteration of net photosynthesis paralleled growth inhibition, decreasing from 7.6 ± 0.9 μmol CO2 m−2 s−1 at low density to 3.5 ± 0.4 μmol CO2 m−2 s−1 at high density, indicating growth inhibition caused by intraspecific competition is mainly due to a decline in net photosynthesis rate. Plants grown at high density also exhibited a reduction in stomatal conductance from 0.7 ± 0.1 mol H2O m−2 s−1 at low density to 0.3 ± 0.1 mol H2O m−2 s−1 at high density and a reduction in transpiration rate from 6.0 ± 0.3 mmol H2O m−2 s−1 at low density to 4.3 ± 0.3 mmol H2O m−2 s−1 at high density. Biomass production was inhibited by an increase in plant density, which reduced the rate of photosynthesis, stomatal conductance and leaf area of plants.  相似文献   

12.
We investigated the burst swimming performance of five species of Antarctic fish at −1.0°C. The species studied belonged to the suborder, Notothenioidei, and from the families, Nototheniidae and Bathydraconidae. Swimming performance of the fish was assessed over the initial 300 ms of a startle response using surgically attached miniature accelerometers. Escape responses in all fish consisted of a C-type fast start; consisting of an initial pronounced bending of the body into a C-shape, followed by one or more complete tail-beats and an un-powered glide. We found significant differences in the swimming performance of the five species of fish examined, with average maximum swimming velocities (Umax) ranging from 0.91 to 1.39 m s−1 and maximum accelerations (Amax) ranging from 10.6 to 15.6 m s−2. The cryopelagic species, Pagothenia borchgrevinki, produced the fastest escape response, reaching a Umax and Amax of 1.39 m s−1 and 15.6 m s−2, respectively. We also compared the body shapes of each fish species with their measures of maximum burst performance. The dragonfish, Gymnodraco acuticeps, from the family Bathdraconidae, did not conform to the pattern observed for the other four fish species belonging to the family Nototheniidae. However, we found a negative relationship between buoyancy of the fish species and burst swimming performance.  相似文献   

13.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

14.
In culture, Gambierdiscus spp. have been shown to prefer irradiances that are relatively low (≤250 μmol photons m−2 s−1) versus those to which they are frequently exposed to in their natural environment (>500 μmol photons m−2 s−1). Although several behavioral strategies for coping with such irradiances have been suggested, it is unclear as to how these dinoflagellates do so on a physiological level. More specifically, how do long term exposures (30 days) affect cell size and cellular chlorophyll content, and what is the photosynthetic response to short term, high irradiance exposures (up to 1464 μmol photons m−2 s−1)? The results of this study reveal that cell size and chlorophyll content exhibited by G. carolinianus increased with acclimation to increasing photon flux density. Additionally, both G. carolinianus and G. silvae exhibited reduced photosynthetic efficiency when acclimated to increased photon flux density. Photosynthetic yield exhibited by G. silvae was greater than that for G. carolinianus across all acclimation irradiances. Although such differences were evident, both G. carolinianus and G. silvae appear to have adequate biochemical mechanisms to withstand exposure to irradiances exceeding 250 μmol photons m−2 s−1 for at least short periods of time following acclimation to irradiances of up to 150 μmol photons m−2 s−1.  相似文献   

15.
Synechocystis PCC 6803 is a model unicellular cyanobacterium used in e.g. photosynthesis and CO2 assimilation research. In the present study we examined the effects of overexpressing Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), sedoheptulose 1,7-biphosphatase (SBPase), fructose-bisphosphate aldolase (FBA) and transketolase (TK), confirmed carbon flux control enzymes of the Calvin-Bassham-Benson (CBB) cycle in higher plants, in Synechocystis PCC 6803. Overexpressing RuBisCO, SBPase and FBA resulted in increased in vivo oxygen evolution (maximal 115%), growth rate and biomass accumulation (maximal 52%) under 100 μmol photons m−2 s−1 light condition. Cells overexpressing TK showed a chlorotic phenotype but increased biomass by approximately 42% under 100 μmol photons m−2 s−1 light condition. Under 15 μmol photons m−2 s−1 light condition, cells overexpressing TK showed enhanced in vivo oxygen evolution. This study demonstrates increased growth and biomass accumulation when overexpressing selected enzymes of the CBB cycle. RuBisCO, SBPase, FBA and TK are identified as four potential targets to improve growth and subsequently also yield of valuable products from Synechocystis PCC 6803.  相似文献   

16.
Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone’s free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k = 2.98 × 1011 M−1 s−1), singlet oxygen (k = 2.75 × 107 M−1 s−1), and methyl radical (k = 3.00 × 107 M−1 s−1). Overall, edaravone’s scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity.  相似文献   

17.
Little is known about how the growth of individual Gambierdiscus species responds to environmental factors. This study examined the effects of temperature (15–34 °C), salinity (15–41) and irradiance (2–664 μmol photons m−2 s−1) on growth of Gambierdiscus: G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus and G. ruetzleri and one putative new species, Gambierdiscus ribotype 2. Depending on species, temperatures where maximum growth occurred varied between 26.5 and 31.1 °C. The upper and lower thermal limits for all species were between 31–34 °C and 15–21 °C, respectively. The shapes of the temperature vs. growth curves indicated that even small differences of 1–2 °C notably affected growth potentials. Salinities where maximum growth occurred varied between 24.7 and 35, while the lowest salinities supporting growth ranged from <14 to 20.9. These data indicated that Gambierdiscus species are more tolerant of lower salinities than is generally appreciated. Growth of all species began to decline markedly as salinities exceed 35.1–39.4. The highest salinity tested in this study (41), however, was lethal to only one species, Gambierdiscus ribotype 2. The combined salinity data indicated that differences in salinity regimes may affect relative species abundances and distributions, particularly when salinities are <20 and >35. All eight Gambierdiscus species were adapted to relatively low light conditions, exhibiting growth maxima at 50–230 μmol photons m−2 s−1 and requiring only 6–17 μmol photons m−2 s−1 to maintain growth. These low light requirements indicate that Gambierdiscus growth can occur up to 150 m depth in tropical waters, with optimal light regimes often extending to 75 m. The combined temperature, salinity and light requirements of Gambierdiscus can be used to define latitudinal ranges and species-specific habitats, as well as to inform predictive models.  相似文献   

18.
To investigate tropical roles of the newly described Yihiella yeosuensis (ca. 8 μm in cell size), one of the smallest phototrophic dinoflagellates in marine ecosystems, its trophic mode and the types of prey species that Y. yeosuensis can feed upon were explored. Growth and ingestion rates of Y. yeosuensis on its optimal prey, Pyramimonas sp. (Prasinophyceae), as a function of prey concentration were measured. Additionally, growth and ingestion rates of Y. yeosuensis on the other edible prey, Teleaulax sp. (Cryptophyceae), were also determined for a single prey concentration at which both these rates of Y. yeosuensis on Pyramimonas sp. were saturated. Among bacteria and diverse algal prey tested, Y. yeosuensis fed only on small Pyramimonas sp. and Teleaulax sp. (both cell sizes = 5.6 μm). With increasing mean prey concentrations, both specific growth and ingestion rates of Y. yeosuensis increased rapidly before saturating at a mean Pyramimonas concentration of 109 ng C mL−1 (2725 cells mL−1). The maximum growth rate (mixotrophic growth) of Y. yeosuensis fed with Pyramimonas sp. at 20 °C under a 14:10-h light-dark cycle of 20 μE m−2 s−1 was 1.32 d−1, whereas the growth rate of Y. yeosuensis without added prey was 0.026 d−1. The maximum ingestion rate of Y. yeosuensis fed with Pyramimonas sp. was 0.37 ng C predator−1 d−1 (9.3 cells predator−1 d−1). At a Teleaulax concentration of 1130 ng C mL−1 (66,240 cells mL−1), growth and ingestion rates of Y. yeosuensis fed with Teleaulax sp. were 1.285 d−1 and 0.38 ng C predator−1 d−1 (22.4 cells predator−1 d−1), respectively. Thus, Y. yeosuensis rarely grows without mixotrophy, and mixotrophy supports high growth rates in Y. yeosuensis. Y. yeosuensis has the highest maximum mixotrophic growth rate with the exception of Ansanella graniferaamong engulfment feeding mixotrophic dinoflagellates. However, the high swimming speed of Y. yeosuensis (1572 μm s−1), almost the highest among phototrophic dinoflagellates, may prevent autotrophic growth. This evidence suggests that Y. yeosuensis may be an effective mixotrophic dinoflagellate predator on Pyramimonas and Teleaulax, and occurs abundantly during or after blooms of these two prey species.  相似文献   

19.
Benthic dinoflagellates of the genus Ostreopsis are found all over the world in temperate, subtropical, and tropical coastal regions. Our recent studies revealed that a putative “cryptic” species of Ostreopsis ovata is present widely along Japanese coasts. This organism, Ostreopsis sp. 1, possesses palytoxin analogs and thus its toxic blooms may be responsible for potential toxification of marine organisms. To evaluate the bloom dynamics of Ostreopsis sp. 1, the present study examined the growth responses of Ostreopsis sp. 1 strain s0716 to various light intensities (photon flux densities: μmol photons m−2 s−1) using a newly devised photoirradiation-culture system. This novel system has white light-emitting diodes (LEDs) capable of more closely simulating the wavelength spectrum of light entering the oceanic water column than do fluorescent tubes and halogen lamps. In this system, the light intensity of the white LEDs was reduced through two polarizing filters by varying the rotation angles of the filters. Thereby, the new system was capable of culturing microalgae under well-controlled light intensity conditions. Ostreopsis sp. 1 grew proportionally when light intensity was increased from 49.5 to 199 μmol photons m−2 s−1, but its growth appeared to be inhibited slightly at ≥263 μmol photons m−2 s−1. The relationship between observed growth rates and light intensity was calculated at R > 0.99 (P < 0.01) using a regression analysis with a modified equation of the photosynthesis-light intensity (P-L) model. The equation determined the critical light intensities for growth of Ostreopsis sp. 1 and the organism's growth potential as follows: (1) the threshold light intensity for growth: 29.8 μmol photons m−2 s−1; (2) the optimum light intensity (Lm) giving the maximum growth rate (μmax = 0.659 divisions day−1): 196 μmol photons m−2 s−1; (3) the optimum light intensity range (Lopt) giving ≥95% μmax: 130–330 μmol photons m−2 s−1; (4) the semi-optimum range (Lsopt) giving ≥80% μmax: 90 to over 460 μmol photons m−2 s−1. The Lsopt represents 4.5–23% ambient light intensity present in surface waters off of a temperate region of the Japanese coast, Tosa Bay; putatively, this semi-optimum range of light intensity appears at depth of 12.9–27.8 m. Considering these issues, our data indicate that Ostreopsis sp. 1 in coastal environments may form blooms at ca. ∼28 m depth in regions along Japanese coasts.  相似文献   

20.
The kinetics of a stomatal response to sudden increases or decreases of CO2 concentrations ([CO2]) was studied in 13 plant species growing in the field. Plants were well supplied with water. In each plant, gas exchange measurements were made on a fully developed leaf that was first left to achieve steady-state stomatal conductance (gs) at 400 μmol (CO2) mol−1) and then exposed to a step change of [CO2] (to 700 μmol mol−1 in one experiment; and to 700 and back to 400 μmol mol−1 in a second experiment). Porometric data were captured in intervals of 3 s until a new steady state was reached.A comparison of t1/2, the half-time needed to achieve new gs, indicates similar responses of stomata in grasses when compared to herbs. The stomata of C4 plants responded in approximately 5 min, the highest closure rate was detected in Echinochloa crus-galli and Digitaria sanguinalis. Opening rates were similar to closing rates and the response as a whole was rather symmetric. In C3 plants, the full response of stomata was much slower. Analysis revealed differences in absolute rates of gs change between C3 and C4 plants. These differences can be related to the specificities of the type of photosynthetic metabolism. C4 photosynthesis enables plants to reduce gs, which can hasten further changes of diffusivity in response to the environmental signals. A possible coupling of C4 metabolism to the regulation of guard cells also has to be taken into account when explaining the observed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号