首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The green colonial alga Botryococcus braunii has unusually high levels of hydrocarbons. Two distinct sites of hydrocarbon accumulation are present in the species: an internal pool present in cytoplasmic inclusions and an external pool in the trilaminar outer walls and associated globules. It is generally assumed that the hydrocarbons are produced within the cells and then excreted into the external pool to maintain the intracellular content at a normal value. Various feeding experiments showed, however, that the radioactivity of the external pool is much higher than the internal one. On the other hand, there was no decrease in the labelling of internal hydrocarbons in chase experiments. Therefore, an excretory process apparently does not take place in B. braunii. The outer wall, therefore, is the main site of hydrocarbon accumulation and also the place where the bulk of B. braunii hydrocarbons are produced. The outer wall also is involved in the matrix of colony formation and the above findings account for the sharp decrease of hydrocarbon production which is associated with the loss of colonial habit. The cultures were also shown to be unable, under usual growth conditions, to catabolize their own hydrocarbons. Such a feature, along with the extracellular location of the main site of production, may account for the abnormally high content of hydrocarbons typical of B. braunii.  相似文献   

2.
The colonial microalga Botryococcus braunii accumulates large quantities of hydrocarbons mainly in the extracellular space; most other oleaginous microalgae store lipids in the cytoplasm. Botryococcus braunii is classified into three principal races (A, B, and L) based on the types of hydrocarbons. Race B has attracted the most attention as an alternative to petroleum by its higher hydrocarbon contents than the other races and its hydrocarbon components, botryococcenes and methylsqualenes, both can be readily converted into biofuels. We studied race B using fluorescence and electron microscopy, and clarify the stage when extracellular hydrocarbon accumulation occurs during the cell cycle, in a correlation with the behavior and structural changes of the lipid bodies and discussed development of the algal colony. New accumulation of lipids on the cell surface occurred after cell division in the basolateral region of daughter cells. While lipid bodies were observed throughout the cell cycle, their size and inclusions were dynamically changing. When cells began dividing, the lipid bodies increased in size and inclusions until the extracellular accumulation of lipids started. Most of the lipids disappeared from the cytoplasm concomitant with the extracellular accumulation, and then reformed. We therefore hypothesize that lipid bodies produced during the growth of B. braunii are related to lipid secretion. New lipids secreted at the cell surface formed layers of oil droplets, to a maximum depth of six layers, and fused to form flattened, continuous sheets. The sheets that combined a pair of daughter cells remained during successive cellular divisions and the colony increased in size with increasing number of cells.  相似文献   

3.
The green microalga Botryococcus braunii (B. braunii), race B, was cultured under light-emitting diode (LED) irradiation with and without violet light. This study examined the effect of violet light on hydrocarbon recovery and production in B. braunii. C34 botryococcene hydrocarbons were efficiently extracted by thermal pretreatments at lower temperatures when the alga was cultured without violet light. The hydrocarbon content was also higher (approximately 3%) in samples cultured without violet light. To elucidate the mechanism of effective hydrocarbon recovery and production, we examined structural components of the extracellular matrix (ECM). The amounts of extracellular carotenoids and water-soluble polymers extracted by thermal pretreatment from the ECM were decreased when the alga was cultured without violet light. These results indicate that LED irradiation without violet light is more effective for hydrocarbon recovery and production in B. braunii. Furthermore, structural ECM components are closely involved in hydrocarbon recovery and production in B. braunii.  相似文献   

4.
The outer walls of the green alga Botryococcus braunii (main sites of hydrocarbon production and accumulation) show a complex constitution. They comprise a biopolymer highly resistant to non-oxidative degradation. The resistant polymer accounts for ca 9% of the cell dry wt and appears, along with hydrocarbons, as one of the major constituents of the alga. In addition to chemical resistance, B. braunii polymer exhibits other properties: mode of deposition and fluorescence, often used to identify sporopollenins. (Class of wall components generally regarded as originating from polymerization of carotenoid derivatives.) Nevertheless further studies, using IR spectroscopy and high resolution 13C NMR of solids, along with determination of elemental composition and unsaturation levels, indicate that the bulk of the resistant polymer from B. braunii outer walls does not derive from carotenoids; accordingly it cannot be considered, in this respect, as a sporopollenin. In fact the information obtained on the structure of this important constituent of the alga is consistent with its formation via oxidative polymerization of B. braunii dienic hydrocarbons.  相似文献   

5.
Raman spectrometry and electron microscopy show that, in the hydrocarbon-rich alga Botryococcus braunii, hydrocarbons accumulate in two distinct sites; internally in cytoplasmic inclusions and externally in successive outer walls and derived globules. No other classes of lipid are present in noticeable amounts in the cytoplasmic inclusions and in the external globules. The same hydrocarbons are observed in the internal and external pools but with different relative abundances, the shorter hydrocarbons being more abundant in the internal pool. The bulk of B. braunii hydrocarbons (ca 95%) is located in the external pool. Such an extracellular location allows this species to exhibit both an unusually high hydrocarbon content (15% of dry wt) and a normal level (0.75%) within the cells. The hydrocarbon pattern and location of B. braunii were compared with that of other organisms; a close relation appears between higher plant epidermal cells and this green alga. The trilaminar outer walls of B. braunii, at whose contact external hydrocarbon globules accumulate, contain a sporopollenin-like compound.  相似文献   

6.
Botryococcus braunii, a green microalga, is known to produce plentiful liquid hydrocarbons as promising biodiesel resources. However, the hydrocarbon extraction methods that have so far achieved have several problems such as low efficiency and high cost. In our study, a solvent-spouted extraction process integrated with photo-bioculture was designed for simultaneous realization of hydrocarbon extraction and cell culture in two phases. The n-octane was selected as the best solvent among several solvents because its biocompatibility was highest for B. braunii. As a result, high level of biomass and hydrocarbon, 4.17 and 893.79 mg/L, respectively, was attained at 100 mL/min of solvent recycling rate through three times of processes for 66 days. Moreover, formation of cell clump was suppressed in solvent extraction, cells were regenerated after it, and thus cell viability was maintained even after repeated cycles of it. Finally, this solvent-spouted culture process required the smaller cost due to reuse of the less solvent and regenerated cells, compared with the other conventional methods. Accordingly, this technique would be applicable to exploit the continuous extraction of hydrocarbon from the algal biomass, especially for application on a large scale.  相似文献   

7.
The green unicellular alga Botryococcus braunii shows unusually high concentrations of non-isoprenoid very long chain hydrocarbons. The structure of such hydrocarbons, the relative efficiency of various long chain fatty acids as precursors, the relationship between fatty acid and hydrocarbon concentrations (over the different physiological stages of the alga achieved during batch cultures) and the preferential localization of fatty acids lead to the conclusion that all the major non-isoprenoid hydrocarbons of B. braunii derive from the same direct precursor, oleic acid. Feeding experiments, using doubly labelled oleic acid, show that the whole carbon chain of the latter is incorporated into final hydrocarbons; accordingly such compounds do not originate from a head-to-head condensation mechanism with oleic acid acting as donor. Various features (regarding chiefly the systematic occurrence of a terminal double bond in B. braunii hydrocarbon, their close specific activities after feeding and the large inhibition in their production achieved using dithioerythritol) show that the biosynthesis of B. braunii hydrocarbons probably takes place via an elongation-decarboxylation mechanism related to that operating in some higher plants.  相似文献   

8.
As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured in media derived from the modified Chu13 medium by supplying artificial seawater, natural seawater, or NaCl. After a certain period of culture in the media with an osmotic pressure corresponding to 1/4-seawater, hydrocarbon recovery rates exceeding 90% were obtained by simply mixing intact wet algae with n-hexane without any pretreatments and the results using the present culture conditions indicate the potential for hydrocarbon milking.

Highlights

Seawater was used for efficient hydrocarbon extraction from Botryococcus braunii. The alga was cultured in media prepared with seawater or NaCl. Hydrocarbon recovery rate exceeding 90% was obtained without any pretreatment.  相似文献   

9.
The structure of liquid hydrocarbons and fatty acids produced by the green alga Botryococcus was identified. Two representatives of this alga, Botryococcus braunii Kütz, strain IPPAS H-252, introduced into culture earlier and an organism isolated for the first time from the Shira Lake, were used for this identification. Fatty acid composition of B. braunii, strain H-252, lipids was characterized by a high content of trienoic acids of C16–C18 series. The hydrocarbon composition of this strain was represented by straight-chain and branched-chain C14–C28 components; long-chain linear aliphatic C20–C27 hydrocarbons (54.4%) and 2,6,10,14-tetramethylhexadecane (20.5%) predominated among them. The strain H-252 differed in its fatty acid and hydrocarbon composition from the strains described earlier as Botryococcus braunii. The fatty acid composition of the Botryococcus isolate was represented mainly by C12–C32 saturated and monoenoic acids. The hydrocarbons formed by this isolate were represented by dienoic and trienoic components. C29 (48.9–56.3%) and C31 (11.1–16.3%) hydrocarbons predominated among the C23–C31 dienoic hydrocarbons, and C27, C29, and C31 trienoic hydrocarbons comprised 2.5–2.6% of total hydrocarbons. This type of hydrocarbons and the lipid fatty acid composition were characteristic for the race A of B. braunii.  相似文献   

10.
Choanoflagellates are unicellular and colonial aquatic microeukaryotes that capture bacteria using an apical flagellum surrounded by a feeding collar composed of actin-filled microvilli. Flow produced by the apical flagellum drives prey bacteria to the feeding collar for phagocytosis. We report here on the cell biology of prey capture in rosette-shaped colonies and unicellular “thecate” or substrate attached cells from the choanoflagellate S. rosetta. In thecate cells and rosette colonies, phagocytosis initially involves fusion of multiple microvilli, followed by remodeling of the collar membrane to engulf the prey, and transport of engulfed bacteria into the cell. Although both thecate cells and rosette colony cells produce ∼70 nm “collar links” that connect and potentially stabilize adjacent microvilli, only thecate cells were observed to produce a lamellipod-like “collar skirt” that encircles the base of the collar. This study offers insight into the process of prey ingestion by S. rosetta, and provides a context within which to consider potential ecological differences between solitary cells and colonies in choanoflagellates.  相似文献   

11.
The production of labelled aliphatic hydrocarbons in Anacystis montana and Botryococcus braunii has been studied using Na2CO3 [14C] as a carbon source. The major hydrocarbon produced by A. montana is pentadecane (ca 93%) accompanied by a pentadecene (ca 4%) and other hydrocarbons in the range C13-C17. Long chain (C21-C 33) hydrocarbons could not be detected in this organism. The variety of unsaturated hydrocarbons (C25-C31) previously reported in Botryococcus braunii is confirmed and contrasts with the synthesis of unsaturated C17 hydrocarbons only, in axenic cultures prepared from single cell isolates of this colonial alga.  相似文献   

12.
Among oleaginous microalgae, the colonial green alga Botryococcus braunii accumulates especially large quantities of hydrocarbons. This accumulation may be achieved more by storage of lipids in the extracellular space rather than in the cytoplasm, as is the case for all other examined oleaginous microalgae. The stage of hydrocarbon synthesis during the cell cycle was determined by autoradiography. The cell cycle of B. braunii race A was synchronized by aminouracil treatment, and cells were taken at various stages in the cell cycle and cultured in a medium containing [14C]acetate. Incorporation of 14C into hydrocarbons was detected. The highest labeling occurred just after septum formation, when it was about 2.6 times the rate during interphase. Fluorescent and electron microscopy revealed that new lipid accumulation on the cell surface occurred during at least two different growth stages and sites of cells. Lipid bodies in the cytoplasm were not prominent in interphase cells. These lipid bodies then increased in number, size, and inclusions, reaching maximum values just before the first lipid accumulation on the cell surface at the cell apex. Most of them disappeared from the cytoplasm concomitant with the second new accumulation at the basolateral region, where extracellular lipids continuously accumulated. The rough endoplasmic reticulum near the plasma membrane is prominent in B. braunii, and the endoplasmic reticulum was often in contact with both a chloroplast and lipid bodies in cells with increasing numbers of lipid bodies. We discuss the transport pathway of precursors of extracellular hydrocarbons in race A.  相似文献   

13.
Botryococcus braunii (Chlorophyta, Botryococcaceae) is a colony-forming green microalga that produces large amounts of liquid hydrocarbons, which can be converted into transportation fuels. There are three different races of B. braunii, A, B, and L, that are distinguished based on the type of hydrocarbon each produces. Each race also has many strains that are distinguished by the location from which they were collected. While B. braunii has been well studied for the chemistry of the hydrocarbon production, very little is known about the molecular biology of B. braunii. To begin to address this problem, we determined the genome size of the A race, Yamanaka strain, and the L race, Songkla Nakarin strain, of B. braunii. Flow cytometry analysis indicates that the A race of B. braunii has a genome size of 166.0 ± 0.4 Mb, while the L race has a substantially larger genome size at 211.3 ± 1.7 Mb. We also used phylogenetic analysis with the nuclear small subunit (18S) rRNA gene to classify strains of the A and B races that have not yet been compared evolutionarily to previously published B. braunii phylogenetics. The analysis suggests that the evolutionary relationship between B. braunii races is correlated with the type of liquid hydrocarbon they produce.  相似文献   

14.
Multiple ionic liquids (ILs) were assessed for their ability to extract branched, unsaturated hydrocarbons from an aqueous medium. In addition, IL cytotoxicity studies were performed on two phototrophic microbes, Synechocystis sp. PCC6803 and Botryococcus braunii var Showa. The optimum IL for use in an isoprenoid hydrocarbon extraction may vary based on the biological source of the isoprenoids. Our results suggest that ionic liquids have the potential to serve as novel biocompatible milking agents for extracting high-value chemicals from the microbes, with toxicity to both species minimized by considerations of ionic liquid structure and hydrophobicity.  相似文献   

15.
16.
Botryococcus braunii, B race is a unique green microalga that produces large amounts of liquid hydrocarbons known as botryococcenes that can be used as a fuel for internal combustion engines. The simplest botryococcene (C30) is metabolized by methylation to give intermediates of C31, C32, C33, and C34, with C34 being the predominant botryococcene in some strains. In the present work we have used Raman spectroscopy to characterize the structure of botryococcenes in an attempt to identify and localize botryococcenes within B. braunii cells. The spectral region from 1600–1700 cm−1 showed ν(C=C) stretching bands specific for botryococcenes. Distinct botryococcene Raman bands at 1640 and 1647 cm−1 were assigned to the stretching of the C=C bond in the botryococcene branch and the exomethylene C=C bonds produced by the methylations, respectively. A Raman band at 1670 cm−1 was assigned to the backbone C=C bond stretching. Density function theory calculations were used to determine the Raman spectra of all botryococcenes to compare computed theoretical values with those observed. The analysis showed that the ν(C=C) stretching bands at 1647 and 1670 cm−1 are actually composed of several closely spaced bands arising from the six individual C=C bonds in the molecule. We also used confocal Raman microspectroscopy to map the presence and location of methylated botryococcenes within a colony of B. braunii cells based on the methylation-specific 1647 cm−1 botryococcene Raman shift.  相似文献   

17.
Different samples of Botryococcus braunii Kütz., freshly collected from nature or laboratory-grown from culture collection strains, were studied by electron microscopy and their hydrocarbon content analyzed. Although the general internal structure of the cells was rather constant, the organization of the outer walls forming the hydrocarbon-rich matrix of the colonies differed greatly from one sample to another. In the majority of cultivated strains, the colonies were rather small, the different successive external walls remained distinct and all strains contained dienic or trienic hydrocarbons. In contrast, most of the collected samples possessed large colonies with a rather compact matrix formed by the hydrocarbon-rich part of the successive closely appressed external wall layers. These samples contained polyunsaturated hydrocarbons, i.e. botryococcenes. Well defined cell caps which sheared off the cells were observed only in those strains with a compact matrix. The Austin strain and some collected samples, however, were intermediate with rather small colonies, dense matrix, definite cell caps and dienic hydrocarbons. Thus, the hydrocarbon composition did not correlate directly with the variations in wall structure; however, the occurence of dienic and botryococcene-like hydrocarbons together in one strain was never observed, although analyzed at various stages of growth. Thus, the existence of distinct strains of Botryococcus braunii, some synthesizing dienes, others botryococcenes, appears highly probable.  相似文献   

18.
19.
Discriminating among individuals and rejecting non-group members is essential for the evolution and stability of animal societies. Ants are good models for studying recognition mechanisms, because they are typically very efficient in discriminating ‘friends’ (nest-mates) from ‘foes’ (non-nest-mates). Recognition in ants involves multicomponent cues encoded in cuticular hydrocarbon profiles. Here, we tested whether workers of the carpenter ant Camponotus herculeanus use the presence and/or absence of cuticular hydrocarbons to discriminate between nest-mates and non-nest-mates. We supplemented the cuticular profile with synthetic hydrocarbons mixed to liquid food and then assessed behavioural responses using two different bioassays. Our results show that (i) the presence, but not the absence, of an additional hydrocarbon elicited aggression and that (ii) among the three classes of hydrocarbons tested (unbranched, mono-methylated and dimethylated alkanes; for mono-methylated alkanes, we present a new synthetic pathway), only the dimethylated alkane was effective in eliciting aggression. Our results suggest that carpenter ants use a fundamentally different mechanism for nest-mate recognition than previously thought. They do not specifically recognize nest-mates, but rather recognize and reject non-nest-mates bearing odour cues that are novel to their own colony cuticular hydrocarbon profile. This begs for a reappraisal of the mechanisms underlying recognition systems in social insects.  相似文献   

20.
ABSTRACT:?

Botryococcus braunii, a green colonial microalga, is an unusually rich renewable source of hydrocarbons and other chemicals. Hydrocarbons can constitute up to 75% of the dry mass of B. braunii. This review details the various facets of biotechnology of B. braunii, including its microbiology and physiology; production of hydrocarbons and other compounds by the alga; methods of culture; downstream recovery and processing of algal hydrocarbons; and cloning of the algal genes into other microorganisms. B. braunii converts simple inorganic compounds and sunlight to potential hydrocarbon fuels and feedstocks for the chemical industry. Microorganisms such as B. braunii can, in the long run, reduce our dependence on fossil fuels and because of this B. braunii continues to attract much attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号