首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
Two experiments were undertaken to adapt the in vitro gas production technique in syringes, used for ruminants, to fibre fermentation studies in the large intestine of pigs.In a first experiment, two inocula (faeces and large intestine content) were compared at four dilution levels in a buffer solution (0.025, 0.05, 0.1 and 0.2 g ml−1) with two substrates: wheat bran and sugar–beet pulp. The accumulated gas produced over 72 h was modelled and the kinetics parameters compared. The time to half asymptote was lower for the intestinal inoculum (5.5 versus 8.0 h, P<0.02), but the 2 inocula yielded similar fractional rates of degradation (0.16 h−1) and gave equal final gas production (252 ml g−1 substrate). No interaction (P>0.05) was observed between inocula and substrates. The dilution of the samples in the buffer solution increased (P<0.001) the lag time (from 0.9 to 2.1 h for dilution rates ranging from 0.2 to 0.025 g ml−1, respectively) and decreased (P<0.001) the rates of substrate degradation (from 0.18 to 0.13 h−1).A second experiment aimed to study the effect of an in vitro pepsin–pancreatin hydrolysis of the sample prior to the gas test. Six substrates were tested: maize, wheat bran, sugar–beet pulp, lupins, peas and soybean meal. The enzymatic hydrolysis affected (P<0.001) the kinetics parameters and the ranking order of the fermented substrates. The lag times also increased for all ingredients. The rate of degradation decreased when peas, lupins, maize and wheat bran were hydrolysed (P<0.001) but it increased with soybean meal (P=0.014) and sugar–beet pulp (P<0.001). Final gas production increased with peas and soybean meal (P<0.001), remained unchanged for lupins and decreased for the other substrates (P<0.001).In conclusion, the method using faeces as a source of microbial inoculum is reliable to characterise the fermentation kinetics of ingredients in the large intestine of pigs. However, it is important to hydrolyse the substrates with pepsin and pancreatin before the gas tests.  相似文献   

2.
Two experiments were undertaken to investigate the influence of (1) pig bodyweight and (2) dietary fibre content of the diet on the in vitro gas production of sugar beet pulp fibre using faecal inoculum.In the first experiment, inocula prepared from young pigs (Y; 16–50 kg), growing pigs (G; 62–93 kg) and sows (S; 216–240 kg) were compared. Sugar beet pulp, hydrolysed in vitro with pepsin and then pancreatin, was used as the fermentation substrate. The cumulated gas productions over 144 h were modelled and the kinetics parameters compared. Lag times (Y: 4.6 h; G: 6.4 h; S: 9.2 h) and half-times to asymptote (Y: 14.7 h; G: 15.9 h; S: 20.8 h) increased with pig bodyweight (P<0.001) and the fractional degradation rates of the substrate differed between the pig categories (Y: 0.110 h−1; G: 0.115 h−1; S: 0.100 h−1; P<0.001). The final gas production was not affected (P=0.10) by the inoculum source.In the second experiment hydrolysed sugar beet pulp was fermented with four inocula prepared from pigs fed diets differing in their total and soluble dietary fibre contents, i.e. low fibre diet rich in soluble fibre (LOW-S) or in insoluble fibre (LOW-I) or high fibre diet rich in soluble fibre (HIGH-S) or in insoluble fibre (HIGH-I). The total and the soluble dietary fibres influenced the kinetics of gas production. The presence of soluble fibres decreased the lag times, whatever the total dietary fibre content (2.7 h for LOW-S versus 3.5 h for LOW-I, 4.0 h for HIGH-S versus 4.4 h for HIGH-I; P<0.001). The half-times to asymptote were higher with the low fibre diets (P<0.001) and, for similar total dietary fibre contents, they were lower when the proportion of soluble fibres increased (LOW-S: 9.9 h; LOW-I: 11.4 h; HIGH-S: 8.9 h; HIGH-I: 10.1 h; P<0.001). The fractional degradation rates of the substrate were the highest with the fibre-rich diet containing a high proportion of soluble fibres (0.158 h−1; P<0.001).In conclusion, the bodyweight of the faeces donors and the dietary fibre composition of the pig diet influence the in vitro fermentation kinetics of hydrolysed sugar beet pulp, but not the final gas production.  相似文献   

3.
《Microbiological research》2014,169(4):294-300
The effectiveness of aqueous extracts of various medicinal plants in detoxification of aflatoxin B1 (AFB1) was tested in vitro by thin-layer chromatography and enzyme-linked immunosorbent assay (ELISA). Among the different plant extracts, the leaf extract of Vasaka (Adhatoda vasica Nees) showed the maximum degradation of AFB1 (≥98%) after incubation for 24 h at 37 °C. The aflatoxin detoxifying activity of the A. vasica leaf extract was significantly reduced by heating to 100 °C for 10 min or autoclaving at 121 °C for 20 min. Dialysis had no effect on aflatoxin detoxifying ability of A. vasica extract and the dialyzed extract showed similar level of detoxification of AFB1 as that of the untreated extract. A time course study of aflatoxin detoxification by A. vasica extract showed that 69% of the toxin was degraded within 6 h and ≥95% degradation was observed after 24 h of incubation. Detoxification of AFB1 by A. vasica extract was further confirmed by liquid chromatography–mass spectrometry (LC–MS) analysis. Phytochemical analysis revealed the presence of alkaloids in methanolic extract of A. vasica leaves. A partially purified alkaloid from A. vasica leaves by preparative TLC exhibited strong AFB1 detoxification activity.  相似文献   

4.
To develop a two-stage in vitro technique that simulates both pre-caecal and hind gut digestion processes, four enzymatic pre-digestion treatments by pepsin and α-amylase (ET0 = control, ET1 = 2 h pepsin + 2 h amylase, ET2 = 2 h pepsin + 4 h amylase, ET3 = 8 h pepsin + 16 h amylase) were tested on oat hay (OH), barley grain (BG) and soybean meal (SBM). Investigated parameters were enzymatic organic matter digestibility (OMDe), and gas production (G48h, G72h) and OM digestibility (OMD) using horse faeces as a source of microbial inoculum.Enzymatic pre-digestion treatments affected (P<0.05) investigated parameters and their ranking differed among feeds. Only OMD of BG and SBM were higher after the pre-digestion treatment. OMD prior to (ET0) and after ET3 application were, successively, 0.357 versus 0.351 (OH), 0.71 versus 0.79 (BG) and 0.70 versus 0.78 (SBM). Net gas production overestimated fermentation potential of non-pre-digested feeds. G72h (ml/g DM) prior to (ET0) and after ET3 application were, successively, 80.3 versus 58.0 (OH), 151.7 versus 30.4 (BG) and 110.6 versus 37.7 (SBM).It was concluded that the enzymatic pre-digestion treatments effects varied among tested feeds, and that the suggested procedure be extended and validated with a large array of feeds of known digestibility values.  相似文献   

5.
We evaluated differences in composition of Iuka gamagrass (Tripsacum dactyloides L.) hay harvested at 06:00 (AM harvest) or 18:00 h (PM harvest), and measured how protein supplementation and time of harvest interact to affect the voluntary intake, digestibility, and N balance of goats. Boer cross wethers (n = 28; 24 kg) were randomly assigned to be fed supplement (310 g/kg of crude protein (CP), fed at 110 g/kg of dry matter (DM) intake, 14 goats) or no supplement (14 goats). Within supplemented or not supplemented groups, goats were randomly assigned to a crossover design of AM harvest (seven goats) or PM harvest (seven goats), and housed individually in metabolism crates with free access to water and mineral blocks. They were fed twice daily, with supplement offered 30 min prior to the morning feedings. After a 7-d adaptation, voluntary intake (goats were offered 1100 g/kg of previous day's intake) was measured for 14 d, followed by a 4-d adjustment phase to equalize DM offered between periods, and finally a 5-d digestion and balance phase. After Period 1, goats were switched to their new hay harvest times, and the protocol was repeated. Compared to the AM harvest, the PM harvest had higher (P<0.03) proportions of total nonstructural carbohydrates (TNC, 70.8 g/kg DM versus 59.0 g/kg DM), monosaccharides (37.0 g/kg DM versus 28.6 g/kg DM), di- and polysaccharides (18.5 g/kg DM versus 15.4 g/kg DM) and less neutral detergent fiber (NDF, 700 g/kg versus 710 g/kg). Crude protein (79 g/kg DM) and starch (15.2 g/kg DM) were similar for the PM and AM harvest. Dry matter digestibility was higher (P<0.03) for the PM versus AM harvests (555 g/kg DM versus 531 g/kg DM) and for supplemented versus not supplemented (563 g/kg DM versus 522 g/kg DM). Voluntary gamagrass DM intake (550 g/d versus 548 g/d) and calculated total digestible DM intake (327 g/d versus 313 g/d) were similar for the PM and AM harvest. However, total digestible DM intake during the digestion and balance phase was higher (P<0.01) for the PM versus AM harvest (317 g/d versus 299 g/d). Time of harvest did not affect N intake, digestion, or calculated retention. Compared to no supplementation, the supplement improved (P<0.01) N digestion (6.1 g/d versus 3.7 g/d) and retention (2.2 g/d versus 1.1 g/d). The PM harvest increased DM digested, largely TNC and digestible DM intake by goats due to increased TNC and not because of a 2% increase in DM intake. Providing a protein supplement had very limited effects on intake and digestibility of gamagrass.  相似文献   

6.
An in vitro model was used to study the fermentation characteristics of carbohydrate fractions of hulless barley (hB), in comparison to hulled barley (HB), hulled oat and oat groats (OG) in the pig intestine. For this purpose, 6 hulless barley cultivars (hB), varying in β-glucan content (36–99 g/kg DM), were compared to 3 HB cultivars, 2 oat groat samples (OG), 3 oat varieties and a reference sample of wheat. The residue of a pepsin–pancreatin hydrolysis was incubated in a buffered mineral solution inoculated with pig faeces. Gas production, proportional to the amount of fermented carbohydrates, was measured for 48 h and kinetics modelled. The fermented solution was subsequently analyzed for microbial production of short-chain fatty acids (SCFA) and ammonia. In vitro dry matter degradability varied according to ingredient (P<0.001). Higher values were observed for OG, ranging from 0.88 to 0.99 as compared to oat, hB and HB, for which degradability ranged from 0.63 to 0.73, 0.68 to 0.80 and 0.69 to 0.71, respectively. A “cereal type” effect (P<0.05) was observed on fermentation kinetics parameters. Total gas production was higher (P<0.05) with hB (224 ml/g DM incubated) than with HB and oat (188 and 55 ml/g DM incubated, respectively). No difference was observed between hB cultivars (P>0.05) for total gas production but differences (P<0.001) were found for lag time and the fractional rate of degradation. Hulless barley cultivar CDC Fibar (waxy starch) and CDC McGwire (normal starch) started to ferment sooner (lag time of 0.7 and 0.9 h, respectively) than SH99250 (high amylose starch; 1.7 h). The fractional rate of degradation was similar in both hB and OG (0.15/h on average), which was higher than that of HB (0.12/h). The production of SCFA was also higher (P<0.05) with hB (6.1 mmol/g DM incubated, on average) than with HB and oat (4.9 and 2.9 mmol/g DM incubated, respectively). Similar trends were found for SCFA production expressed per g fermented carbohydrates, with higher butyrate and lower acetate ratio. In contrast, oat fermentation generated higher (P<0.05) ammonia concentration (1.4 mmol/g DM incubated, on average) than hB (1.0 mmol/g DM incubated). In summary, hulless barleys, irrespective of cultivar type had higher in vitro fermentability and produced more SCFA and less ammonia than hulled barley and oat. Thus, hulless barleys have a better potential to be used in pig nutrition to manipulate the fermentation activity in the intestine of pigs.  相似文献   

7.
《Process Biochemistry》2007,42(3):462-465
Under the optimal conditions, 10 U/ml of glucoamylase was produced by the marine yeast Aureobasidium pullulans N13d. It was noticed that the crude glucoamylase actively hydrolyzed potato starch granules, but poorly digested raw corn starch and sweet potato starch, resulting in conversion of 68.5, 19 and 22% of them into glucose within 6 h of incubation in the presence of 40 g/l of potato starch granules and 20 U/ml of the crude enzyme. When potato starch granules concentration was increased from 10 to 80 g/l, hydrolysis extent was decreased from 85.6 to 60%, while potato starch granules concentration was increased from 80 to 360 g/l, hydrolysis extent was decreased from 60 to 56%. Ratio of hydrolysis extent of potato starch granules to hydrolysis extent of gelatinized potato starch was 86.0% and the hydrolysis extent of potato starch granules by action of the crude glucoamylase (1.0 U/ml) was 18.5% within 30 min at 60 °C. Only glucose was detected during the hydrolysis, indicating that the crude enzyme could hydrolyze both α-1,4 and α-1,6 linkages of starch molecule in the potato starch.  相似文献   

8.
An investigation of the kinetics and synchronicity of rumen crude protein and starch degradability was performed for maize, flaked maize, ensiled maize cob, barley, flaked barley, wheat, oat, sorghum and triticale grain, using the in situ polyester bag technique. Kinetics of rumen degradability were corrected for particle losses from the bag before degradation. Washing losses were measured by shaking feed samples in polyester bags in tap water at 20°C for 1 h and recovering the particle losses in fibre glass filter. Mean washing losses of dry matter were 442 g/kg DM (soluble fraction 17%); mean washing losses of nitrogen were 446 g/kg nitrogen, with 52% being water soluble. Starch escaped to a higher extent from the bags in the washing machine (average washing losses were 581 g/kg starch, with a soluble fraction of 7%). Degradability data for dry matter, nitrogen and starch measured at each time of incubation were corrected for the respective particle losses and fitted with both first order and Gompertz (sigmoidal) models. The difference between the estimated parameters obtained with the two models was negligible, although differences occurred for the immediately soluble fraction (a) of dry matter and starch and for total degradable fractions of dry matter, nitrogen and starch. No differences were observed between effective degradabilities, independent of rumen outflow rate (0.04 and 0.08/h), apart for the mean effective degradability of nitrogen at 0.08/h, which was higher for the first order model (577 versus 564 g/kg, P < 0.001). The advantage of using the Gompertz model to interpret the kinetics of rumen degradability of cereals was due to the possibility of studying synchronicity of nitrogen and starch released into the rumen and ranking feeds according to their degradability pattern, which required the calculation of the first derivatives of the Gompertz model for nitrogen and starch and weighted for their respective amounts in the feeds. The difference of these ratios from the optimum value of 30 mg N per 1 g starch gives the instantaneous synchronicity of the cereals. Maize, flaked maize, maize cob and sorghum had negative and almost constant values during the first 8 h of incubation. Barley, flaked barley, wheat, triticale and oat changed from an initially negative value to a positive value from about 4 h onwards; oats had a similar pattern, but a positive value was observed only after 6 h.  相似文献   

9.
Effects of supplementing willow stem cuttings to ewes grazing drought pastures upon plasma amino acid (AA) concentrations was studied on Massey University's Riverside Farm, near Masteron, on the East Coast of New Zealand. Ewes of similar age and weight (i.e., 59.0 ± 2.22 kg) were assigned to two groups of 7 each, either with (supplemented) or without (control) supplementation of willow, and experimental grazing was carried for 10 weeks from early February until mid April of 2005. Live weight (LW) was recorded fortnightly and body condition score (BCS) was monthly. Blood samples for quantification of plasma amino acids were collected at week 5 and 10. Both groups had a similar pre-grazing pasture mass (i.e., 2000 kg of dry matter/ha) and dead matter content (0.80) with the diet selected by the ewes containing a metabolisable energy (ME) of 8.3 MJ/kg DM, which is typical of drought conditions. The willow was readily eaten, with intake averaging 0.26 kg DM/ewe/d. Willow was of higher ME content than short drought pasture (i.e., 10.1 versus 8.4 MJ/kg DM) and contained condensed tannins at 40.8 ± 1.97 g/kg DM. Both groups of ewes lost live weight at about 50 g/d. Plasma concentration of 3-methyl histidine (88 versus 127 μmol/L) at week 5 and non-essential amino acids (1082 versus 1417 μmol/L) at week 5 and (1155 versus 1324 μmol/L) at week 10, were substantially lower (P<0.05) in willow supplemented versus control ewes, indicating that willow supplementation reduced catabolism of body proteins in ewes under drought feeding conditions.  相似文献   

10.
The mycotoxin ochratoxin A (OTA) is degraded extensively in the rumen. In this study, the relative contribution of different rumen microbial populations (MP) and the effect of diet on degradation of OTA were evaluated in a factorial design experiment. Degradation of OTA was quantified by using the Hohenheim gas test (HGT) in vitro fermentation system. Five different HGT diets were used (concentrate:forage proportions (C:F) – 10:90, 30:70, 50:50, 70:30, 90:10), and donor animals were fed diets with the respective ratio. Diets with the highest concentrate content were supplied with and without 10 g/kg sodium bicarbonate (70:30 BC and 90:10 BC). The MP included whole rumen fluid, fungi + protozoa, bacteria + protozoa, protozoa and bacteria + fungi. Protozoa numbers were counted after 24 h and OTA and ochratoxin alpha (OTα) analysed at 0, 4, 8, 12, 24 h. Area under the curve (AUC) and half-life were calculated for the latter two. The short average OTA half-life for whole rumen fluid of 2.6 h (1.3–4.5 h) demonstrates the high OTA degradation capacity of the rumen MP (i.e., standard HGT inoculum) and corresponds well with published in vivo results. Both MP and diet affected OTA degradation. Interactions among factors occurred (P<0.001), which made it necessary to do further comparisons within factor levels. Among MP, those with bacteria (bacteria + fungi and bacteria + protozoa) had lower AUC values (P<0.001) for OTA (196–673 ng/ml h, meaning higher degradation capacity, than those without bacteria (fungi + protozoa and protozoa; 701–1206 ng/ml h). Whole rumen fluid had the lowest AUC values (146–249 ng/ml h; P<0.05). Diet had a quadratic effect (P=0.001) on protozoal numbers with minimum values for the lowest and highest C:F ratios, for bacteria + protozoa, fungi + protozoa and protozoa, but no corresponding effect was found for OTA degradation parameters. While the generally high capacity to degrade OTA was confirmed, results for the contribution of different microbial groups shed new light on ruminal OTA degradation.  相似文献   

11.
The aim of this study was to investigate the effectiveness of bioaugmentation and transfer of plasmid pWWO (TOL plasmid) to mixed microbial populations in pilot and laboratory scale sequencing batch biofilm reactors (SBBRs) treating synthetic wastewater containing benzyl alcohol (BA) as a model xenobiotic. The plasmid donor was a Pseudomonas putida strain chromosomally tagged with the gene for the red fluorescent protein carrying a green fluorescent protein labeled TOL plasmid, which confers degradation capacity for several compounds including toluene and BA. In the pilot scale SBBR donor cells were disappeared 84 h after inoculation while transconjugants were not detected at all. In contrast, both donor and transconjugant cells were detected in the laboratory scale reactor where the ratio of transconjugants to donors fluctuated between 1.9 × 10?1 and 8.9 × 10?1 during an experimental period of 32 days. BA degradation rate was enhanced after donor inoculation from 0.98 mg BA/min prior to inoculation to 1.9 mg BA/min on the seventeenth day of operation. Survival of a bioaugmented strain, conjugative plasmid transfer and enhanced BA degradation was demonstrated in the laboratory scale SBBR but not in the pilot scale SBBR.  相似文献   

12.
Oxidative stress plays a key role in the male reproductive function. Differences between rabbit breeds have been found for testis size, seminiferous tubule diameter, number and size of interstitial and germ cells, etc. Traits related to the redox system could also be affected by genetic factors. It is likely that differences between breeds for these traits would lead to differences in reproductive maturation and fertility.We have investigated in the present paper the age-related changes of the plasma testosterone (TST) concentration, superoxide anion (O2?) radical formation, superoxide dismutase (SOD) activity, catalase (CAT) activity and thiobarbituric acid-reactive substances (TBARs) level in testis of rabbits in two breeds selected for different aptitudes (Caldes for growth rate and Prat for litter size). The effect of birth season for these traits was also assessed.Major changes in parameters related to oxidative stress were observed at an early age and most probably can be explained by the concomitant changes in testicular structure and function. Both lines showed similar developmental profiles and levels for all the variables studied. There was no interaction between line and birth season, consequently environmental conditions affected both lines in the same manner. Significant differences between males born in different seasons were found for O2? (4.84 ± 0.19 RLU/mg tissue min versus 5.67 ± 0.19 RLU/mg tissue min), SOD (6.12 ± 0.11 U/mg protein versus 7.09 ± 0.11 U/mg protein) and CAT (0.058 ± 0.002 K/mg protein versus 0.040 ± 0.002 K/mg protein). Future studies should take into account differences between seasons for a more precise analysis.  相似文献   

13.
Two series of new thiazolidin-4-one derivatives 4ac and 8ae were designed and prepared. All the synthesized compounds were evaluated for their in vitro COX-2 selectivity and anti-inflammatory activity in vivo. Compounds 8c and 8d showed the best overall in vitro COX-2 selectivity (selectivity indexes of 4.56 and 5.68 respectively) and in vivo activities (edema inhibition % = 61.8 and 67 after 3 h, respectively) in comparison with the reference drug celecoxib (S.I. = 7.29, edema inhibition % = 60 after 3 h). In addition, 8c and 8d were evaluated for their mean effective anti-inflammatory doses (ED50 = 27.7 and 18.1 μmol/kg respectively, celecoxib ED50 = 28.2 μmol/kg) and ulcerogenic liability (reduction in ulcerogenic potential versus celecoxib = 85%, 92% respectively. Molecular docking studies were performed and the results were in agreement with that obtained from the in vitro COX inhibition assays.  相似文献   

14.
Successful antral formation in vitro from bovine preantral follicles (145–170 μm) has been described previously, but antrum formation from the primary follicle (50–70 μm) has not yet been achieved in vitro. The aim of the study was to establish an optimal culture system supporting the growth and maturation of bovine primary follicles (50–70 μm) in vitro. Bovine primary follicles were cultured in a three-dimensional culture system for 13 or 21 days in alpha-minimum essential medium. Various treatments including follicle stimulating hormone (FSH), luteinizing hormone (LH), 17β-estradiol (E2), basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were tested. The follicular diameter and antrum formation rate were recorded, and follicular maturation markers (P450 aromatase, CYP19A1; anti-Mullerian hormone, AMH; growth differentiation factor-9, GDF9; bone morphogenetic protein-15, BMP15; and type III transforming growth factor β receptor, TGFβR3) were analyzed by real-time RT-PCR. After 21 days of culture under each treatment condition, the follicular diameter was significantly enlarged in the presence of FSH + LH + E2 + bFGF or FSH + LH + E2 + bFGF + EGF (p < 0.05). An addition of 50 ng/ml bFGF or bFGF + 25 ng/ml EGF initiated antrum formation by day 19 and day 17 of culture, and the antral cavity formation rate was 16.7% and 33.3% by 21 days of culture, respectively. The expression of follicular maturation markers (CYP19A1, AMH, GDF9, BMP15 and TGFβR3) was significantly altered. We conclude that addition of 50 ng/ml bFGF + 25 ng/ml EGF to media containing FSH + LH + E2 turned out to be the most effective optimized culture conditions to support the growth and maturation of bovine primary follicles in vitro.  相似文献   

15.
Sheep rumen contents were used as inoculum for an in vitro semi-continuous incubation system to study whether preservation method affects microbial fermentation pattern. Rumen fluid was filtered and either used immediately as inoculum (CTL) or dispensed into 110 mm × 16 mm tubes, that were stored refrigerated at 6 °C for 4 h (REF) or frozen at ?20 °C (FRZ), frozen in liquid N (FLN) or added with 0.04 glycerol and frozen in liquid N (FGL) for 48 h. Frozen inocula were thawed at 39 °C for 2 min before use (16 ml per bottle). Two 24 h incubations with four bottles per treatment were completed. The microbial utilisation of added glycerol after thawing in FGL increased total gas production (P<0.05) and 24 h volatile fatty acid (VFA) production (P<0.05), and also increased propionate and butyrate proportions at the expense of acetate. The other freezing inocula (i.e., FLN and FRZ) reduced the rate of gas production (as ml/g dry matter per hour), compared with CTL in the first 2 and 4 h of incubation (P<0.05), but this was compensated by increased fermentation at 8 and 12 h, respectively. Differences in gas production did not manifest a different VFA pattern at either 6 or 24 h incubation. Bacterial diversity was slightly affected by the preservation process, and the similarity index between untreated inocula and the 24 h incubated CTL samples was 0.690–0.724. Similarity between bacterial communities in FRZ and FLN with that in CTL after incubation was 0.678. The freezing preservation method of rumen inocula for subsequent in vitro gas production studies does not affect microbial fermentation pattern or bacterial biodiversity, provided that processing is rapid enough by using a high surface to volume ratio. Freezing in liquid N is more appropriate than at ?20 °C.  相似文献   

16.
NS5 is the largest and most conserved protein among the four dengue virus (DENV) serotypes. It has been the target of interest for antiviral drug development due to its major role in replication. NS5 consists of two domains, the N-terminal methyltransferase domain and C-terminal catalytic RNA-dependent RNA polymerase (RdRp) domain. It is an unstable protein and is prone to inactivation upon prolonged incubation at room temperature, thus affecting the inhibitor screening assays. In the current study, we expressed and purified DENV RdRp alone in Esherichia coli (E. coli) cells. The N-terminally His-tagged construct of DENV RdRp was transformed into E. coli expression strain BL-21 (DE3) pLysS cells. Protein expression was induced with isopropyl-β-D-thiogalactopyranoside (IPTG) at a final concentration of 0.4 mM. The induced cultures were then grown for 20 h at 18 °C and cells were harvested by centrifugation at 6000 x g for 15 min at 4 °C. The recombinant protein was purified using HisTrap affinity column (Ni-NTA) and then the sample was subjected to size exclusion chromatography, which successfully removed the degradation product obtained during the previous purification step. The in vitro polymerase activity of RdRp was successfully demonstrated using homopolymeric polycytidylic acid (poly(rC)) RNA template. This study describes the high level production of enzymatically active DENV RdRp protein which can be used to develop assays for testing large number of compounds in a high-throughput manner. RdRp has the de novo initiation activity and the in vitro polymerase assays for the protein provide a platform for highly robust and efficient antiviral compound screening systems.  相似文献   

17.
Mucuna pruriens seeds have relatively high crude protein (CP) concentrations, but little is known about their potential to replace commonly used CP supplements in ruminant rations. The aim of this experiment was to determine effects of replacing soybean meal (SB) with Mucuna on the performance of lambs. Forty Rambouillet lambs (33.2 ± 5.73 kg) fed a basal diet of maize grain, cottonseed hulls and urea were randomly assigned to one of four supplements formulated by substituting 0 (SB), 330 (Lo), 670 (Med) or 1000 g/kg (Hi) of soybean meal with rolled Mucuna seeds. Lambs were housed individually in metabolic crates and allowed ad libitum access to isocaloric (metabolizable energy=11.7 MJ/kg dry matter, DM) and isonitrogenous (CP = 146 g/kg, DM) diets for 14 d of adaptation and 7 d of total fecal collection. Fecal egg counts and coccidian oocyst scores were determined on d 14. Dry matter intake (1.7 kg/d versus 1.5 kg/d; P<0.05), CP digestibility (774 g/kg versus 714 g/kg DM; P<0.05) and N retention (28.0 g/d versus 20.4 g/d; P<0.01) were higher and amylase-pretreated neutral detergent fiber digestibility (617 g/kg versus 686 g/kg DM) was lower (P<0.05) in sheep fed SB versus Mucuna diets. However, supplementary protein source did not affect rumen pH, blood urea N or glucose concentration, or fecal egg counts. Increasing the level of Mucuna supplementation increased (P<0.05) level and efficiency of microbial protein synthesis, ruminal fluid acidity, total volatile fatty acid concentration, decreased (P<0.05) coccidian oocyst scores, and tended (P<0.10) to increase N retention. Therefore, SB is a better supplement than Mucuna to support performance of lambs. Nevertheless, Mucuna seeds are a promising CP supplement for situations where cost or availability precludes use of SB in ruminant rations.  相似文献   

18.
We assessed the effect of growth at either 400 μmol mol?1 (ambient) or 1000 μmol mol?1 (elevated) CO2 and 0 g L?1 (deprivation) or 30 g L?1 (supplementation) sugar on morphological traits, photosynthetic attributes and intrinsic elements of the CAM pathway using the CAM orchid Phalaenopsis ‘Amaglade’. The growth of shoot (retarded) and root (induced) was differently affected by CO2 enrichment and mixotrophic regime (+sugar). The Fv/Fm ratio was 14% more in CO2-enriched treatment than at ambient level during in vitro growth. At elevated level of CO2 and sugar treatment, the content of Chl(a + b), Chl a/b and Chl/Car was enhanced while carotenoid content remained unaltered. During in vitro growth, gas-exchange analysis indicated that increased uptake of CO2 accorded with the increased rate of transpiration and unchanged stomatal conductance at elevated level of CO2 under both photo- and mixotrophic growth condition. At elevated level of CO2 and sugar deprivation, activities of Rubisco (26.4%) and PEPC (74.5%) was up-regulated. Among metabolites, the content of sucrose and starch was always higher under CO2 enrichment during both in vitro and ex vitro growth. Our results indicate that plantlets grown under CO2 enrichment developed completely viable photosynthetic apparatus ready to be efficiently transferred to ex vitro condition that has far-reaching implications in micropropagation of Phalaenopsis.  相似文献   

19.
《Process Biochemistry》2014,49(8):1288-1296
This study details on cloning and characterization of Cu,Zn superoxide dismutase (Ca–Cu,Zn SOD) from a medicinally important plant species Curcuma aromatica. Ca–Cu,Zn SOD was 692 bp with an open reading frame of 459 bp. Expression of the gene in Escherichia coli cells followed by purification yielded the enzyme with Km of 0.047 ± 0.008 μM and Vmax of 1250 ± 24 units/mg of protein. The enzyme functioned (i) across a temperature range of −10 to +80 °C with temperature optima at 20 °C; and (ii) at pH range of 6–9 with optimum activity at pH 7.8. Ca–Cu,Zn SOD retained 50% of the maximum activity after autoclaving, and was stable at a wide storage pH ranging from 3 to 10. The enzyme tolerated varying concentrations of denaturating agent, reductants, inhibitors, trypsin, was fairly resistant to inactivation at 80 °C for 180 min (kd, 6.54 ± 0.17 × 10−3 min−1; t1/2, 106.07 ± 2.68 min), and had midpoint of thermal transition (Tm) of 70.45 °C. The results suggested Ca–Cu,Zn SOD to be a kinetically stable protein that could be used for various industrial applications.  相似文献   

20.
A critical stage in the optimization of in vitro maturation (IVM) is the selection of good quality oocytes. There exists a relationship between the size of the cumulus investment and the in vitro developmental ability of the cumulus–oocyte complex (COC), which provides a basis for the selection of the COCs. This study was designed to evaluate the effect of the number of cumulus cell layers which enclose the oocytes, on the in vitro maturation, cytoplasm quality and cumulus expansion of the ovine oocytes. Ovaries were obtained from an abattoir and transported to the laboratory within 1–2 h, at 37 °C. Oocytes (n = 535) were recovered by means of an aspiration pump (set at a flow rate of 10 mL H2O/min), with a disposable 20 G needle attached. Oocytes were divided into four classes (classes I to IV – with more than 5, 3–4, 1–2 and no cumulus cell layers, respectively) and separately cultured in a TCM199 medium for 24 h. The morphology of oocytes was evaluated following in vitro culture (IVC) to assess cumulus expansion, cytoplasm quality (score I with a homogenous cytoplasm and II with granulated cytoplasm) and nuclear maturation stage. The percentage of maximum cumulus expansion for classes I to III oocytes were 53.0 ± 1.0, 36.3 ± 2.2 and 16.3 ± 1.8% respectively. The rate of meiotic resumption of oocytes in classes I to IV were 77.0 ± 2.7, 77.2 ± 1.9, 53.0 ± 2.1 and 2.7 ± 1.1% respectively. The proportion of oocytes with a cytoplasm quality I in oocyte classes I to IV were 62.8 ± 1.5, 59.4 ± 1.2, 36.4 ± 2.1 and 0.5 ± 1.1%, respectively. Results showed that the presence of ≥3 cumulus cell layers in the COC prior to IVM led to a better (p < 0.05) cumulus expansion, meiotic resumption and cytoplasmic maturation rate. Thus the morphological grading of immature ovine oocytes may be an appropriate selection criterion regarding their developmental ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号