首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Woody plant encroachment alters the structure and function of rangeland ecosystems. The objective of this study was to explore the association between woody plant encroachment and various ecosystem properties (i.e. vascular plant species diversity, richness, evenness, soil organic matter, herbaceous biomass, leaf litter and bare ground cover) in a semiarid savanna rangeland, and also to test whether the relationships were influenced by woody species composition, elevation and site. We carried out a vegetation survey in four rangeland sites in the lower Omo region of southwestern Ethiopia, and regressed each one of the ecosystem properties, separately, against woody plant density, elevation and site using multiple linear regressions. We found that vascular plant species diversity, richness and evenness increased with woody plant density, most likely due to increased spatial heterogeneity and soil microclimate improvement. Bare ground cover increased significantly, whereas herbaceous biomass and soil organic matter did not respond to woody encroachment. In a subsequent investigation, we used a redundancy analysis to assess whether ecosystem properties were influenced by the identity of encroaching woody plant species. Species diversity and richness responded positively to Lannea triphylla, whereas leaf litter responded positively to Grewia tenax and G. villosa. Our findings suggest that woody plant encroachment in a semiarid rangeland does alter ecosystem properties. However, its impact is highly variable, influenced by a set of factors including the level of encroachment and identity of encroaching woody species.  相似文献   

2.
Habitat heterogeneity is a key driver of the diversity and distribution of species. African savannas are experiencing changes in their vegetation structure causing shifts towards increased woody plant cover, which results in vegetation structure homogenization. Given the impact that increasing woody plant cover has on patterns of animal use, resource managers across Africa are implementing habitat management practices that are intended to reduce woody plant cover. To understand the ecological implications of various habitat management practices on arthropod and bird communities, we leveraged large‐scale tree clearing and subsequent mowing in an African savanna to understand how changes in both the herbaceous layer and woody plant cover (i.e., structural heterogeneity) may shape arthropod and bird communities at the local scale. We focused on four replicated treatments: (1) annual summer mow, (2) annual winter mow, (3) >5 years since last mow (rest), and (4) an adjacent unmanipulated savanna to act as a control. We found that the mowing treatments significantly influenced vegetation structure both with respect to tree density and herbaceous layer. Both arthropod and bird community composition varied across treatments. Grass biomass was the best predictor of arthropod richness and abundance, with arthropods selecting for areas with high biomass. Insectivorous bird richness and abundance was driven by tree density (i.e., perching locations) and not arthropod abundance. Our results suggest that vegetation management practices contribute to habitat heterogeneity at the landscape scale and increase bird species richness through species turnover. However, we caution that if a single vegetation management practice dominates the landscape, it is plausible that it could lead to the simplification of the avian community.  相似文献   

3.
The vegetation and environmental conditions of south Swedish hornbeam Carpinus betulus forests are described with data from 35 permanent sample plots The main floristic gradient of the ground vegetation is closely related to acid-base properties of the top soil base saturation, pH and organic matter content Other floristic differences are related to tree canopy cover and the distance of the sample plots to the Baltic coast Species richness of herbaceous plants typical of forests increases with soil pH, The number of other herbaceous species, occurring in both forests and open habitats, and of woody species is not related to pH Comparisons of vegetation data from 1983 and 1993 show relatively small compositional differences of the herbaceous forest flora The number of other herbaceous species increased considerably m those plots where canopy trees had been cut after 1983 The number of new species in managed plots increases with soil pH Species losses and gains of the herbaceous forest flora between 1983 and 1993 are generally lower as compared with other herbaceous species and woody species However, the ground cover of herbaceous forest species, especially of Oxalis acetosella and Lamium galeobdolon , was considerably lower in 1993 as compared to 1983 in both unmanaged and managed plots Possible explanations for this decrease are current soil acidification and drought during the growing season  相似文献   

4.
《Flora》2005,200(4):361-375
The ability of simple plant traits used as surrogate of species to reflect environmental variability of grasses and herbs in a West African savanna subject to fallow land rotation is assessed by referring to plants’ functional attributes. The aim is to determine the nature and the importance of the loss of information associated with the trait-vs.-species simplification. The traits selected are easily observable and widely documented. They are related to plant responses to resource availability, environmental constraints/disturbances and to plant palatability and capacity to disperse. The co-inertia analyses of both species–environment and traits–environment are compared. Although selected traits account for only a part of the variability recorded by species, they are relevant and most of them have an ecological significance. Syndromes of attributes that reflect the functional plant–environment relationships of the grass layer along a twofold gradient of soil fertility and woody cover could then be established. Periodic clearing and soil fertility decline produced by the fallow system determine vegetation types dominated by herbaceous species ranging from competitive and ruderal-competitive on fertile and wooded sites to stress-tolerant ruderal on unfertile and non-wooded sites. Thus, selected traits do not reveal all functional aspects of the relationships of savanna plants to their environment, such as soil hydromorphy and depth of the clayey horizon. That is possibly due to the scarcity of traits that characterize the root system involved in the analysis.  相似文献   

5.
The research about species richness pattern and elevational Rapoport's rule (ERR) have been carried out mostly in the temperate regions in the recent years and scarcely in the tropical mountains; meanwhile, it is unclear whether the ERR is consistent among different life‐forms and phytogeographic affinities. Here, we compiled a database of plant species of Mount Kenya, a tropical mountain of East Africa, and divided these species into twelve groups depending on the life‐form and phytogeographic affinity of each species. We inspected the species richness pattern of each group along the elevation gradient and also tested ERR of each group using Stevens' method. Our results showed that species richness of the total species showed a positively skewed (hump‐shaped) pattern along the elevation gradient and different life‐forms and phytogeographic affinities showed similar hump‐shaped patterns as the total species. The average elevation range size of the total species and herbaceous species showed increasing patterns along the elevation gradient, while lycophytes and ferns, and woody species showed an obvious downward trend after peaking in the high elevation regions. We concluded that the widely distributed herbaceous species which also have broad elevation range sizes are more applicable to ERR, while the narrowly distributed woody species with small elevation range sizes occurring in the higher elevations could reverse ERR. Therefore, we concluded that the ERR is not consistent among different organisms in the same region.  相似文献   

6.
Seed predation and seedling mortality can act as strong demographic “bottlenecks” to sapling recruitment in African savanna woodlands. Fire also limits tree recruitment from saplings by suppressing their growth. I conducted field experiments with 13 woody plant species to assess the effects of seed burial on seedling emergence rates and effects of fire on seedling and sapling survival and growth rates over a period of 8 years at a savanna plot in central Zambia, southern Africa. Seed removal rates by small rodents varied among years and buried seeds had significantly higher emergence rates than seeds exposed to predators in most but not all the species. Annual burning reduced sapling growth in some species but in other species saplings experienced successive shoot die back even in the absence of fire. The findings show that for some woody species, seed predation is an important constraint to seedling recruitment but not for others and annual fires are important hindrances to demography and growth for some species but not others. Thus, demographic “bottlenecks” occur at different life history stages in different savanna woody species and these have the potential to alter woody tree competitive relationships and ultimately savanna structure.  相似文献   

7.
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βreplβrich分别表现出单峰格局和“U”形格局, 而草本植物βreplβrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。  相似文献   

8.
The species richness of 109 amphi-Pacific disjunct genera was examined in eastern Asia and North America. Although the entire flora of eastern Asia contains approximately one-third more species than that of North America, the difference in species richness among disjunct taxa is less. When woody and herbaceous genera are considered separately, the former exhibit a strong diversity bias favouring eastern Asia whereas there is no significant difference in diversity between continents among herbaceous genera. This result is not due to habitat differences between woody and herbaceous genera, because the disjunct herbs inhabit primarily moist forests and woodlands. This result is also not related to relative phylogenetic advancement, even though older major lineages of plants tend to have a predominance of woody taxa. Woody genera are distributed in lower latitudes than herbaceous genera on both continents, and both woody and herbaceous genera are distributed in lower latitudes in eastern Asia than in North America. The North American temperate flora is primarily a relict of a flora form 7 more widespread throughout the Northern Hemisphere. Contemporary patterns of diversity suggest that the effects of climate changes in the late Tertiary were less severe in eastern Asia and promoted diversification, but were more severe in North America and may have caused widespread extinction. The difference in the effect of climate change on diversity in herbaceous and woody lineages reflects the different ecological relationships of species having these contrasting life forms. Clearly, the contemporary floras of eastern Asia and North America bear the imprint of history and emphasize the important interface between ecological relationships and evolutionary responses.  相似文献   

9.
Incentivizing carbon storage can be a win‐win pathway to conserving biodiversity and mitigating climate change. In savannas, however, the situation is more complex. Promoting carbon storage through woody encroachment may reduce plant diversity of savanna endemics, even as the diversity of encroaching forest species increases. This trade‐off has important implications for the management of biodiversity and carbon in savanna habitats, but has rarely been evaluated empirically. We quantified the nature of carbon‐diversity relationships in the Brazilian Cerrado by analyzing how woody plant species richness changed with carbon storage in 206 sites across the 2.2 million km2 region at two spatial scales. We show that total woody plant species diversity increases with carbon storage, as expected, but that the richness of endemic savanna woody plant species declines with carbon storage both at the local scale, as woody biomass accumulates within plots, and at the landscape scale, as forest replaces savanna. The sharpest trade‐offs between carbon storage and savanna diversity occurred at the early stages of carbon accumulation at the local scale but the final stages of forest encroachment at the landscape scale. Furthermore, the loss of savanna species quickens in the final stages of forest encroachment, and beyond a point, savanna species losses outpace forest species gains with increasing carbon accumulation. Our results suggest that although woody encroachment in savanna ecosystems may provide substantial carbon benefits, it comes at the rapidly accruing cost of woody plant species adapted to the open savanna environment. Moreover, the dependence of carbon‐diversity trade‐offs on the amount of savanna area remaining requires land managers to carefully consider local conditions. Widespread woody encroachment in both Australian and African savannas and grasslands may present similar threats to biodiversity.  相似文献   

10.
Extensive degraded short tussock grasslands of New Zealand's eastern South Island were dominated by woody vegetation prior to burning and livestock grazing associated with human settlement starting 800 years ago. There is increasing interest in restoring some of these grasslands back to a woody state. However, because of the long time frames involved in establishing a woody cover, it is difficult to predict the impacts that woody restoration will have on the extant herbaceous flora. Using a factorial trial with artificial shade and grazing exclusion, we assessed the potential impact of woody restoration on the structure and composition of the herbaceous flora over a six‐year period. The imposition of artificial shade resulted in significant increases in total species richness and the total cover of herbaceous vegetation, increases in cover of several individual forb and grass species and decreases in the cover of bare ground, moss and lichen in shade treatments. There were also changes in the overall community composition of shaded treatments reflecting these changes in vegetation cover and species richness. We found no statistically significant effects of grazing exclusion. We suggest that increased soil moisture resulting from shade addition plays an important role in increasing the herbaceous component of the flora. While woody restoration will have a range of effects on the herbaceous understorey, for example through competition and changes in soil conditions, our findings are important for planning future woody restoration in these degraded tussock grasslands. In particular, our results suggest that the best approach to ensure the persistence of herbaceous vegetation in woody restorations might be to ensure that restoration plantings result in a spatially heterogeneous vegetation arrangement.  相似文献   

11.
This study investigated the roles played by area enclosures and fallow age in the restoration of plant species richness and soil seed bank species richness in degraded mountain rangelands in northern Ethiopia. Management types (enclosures versus grazed) influenced woody and herbaceous species richness, while fallow age showed no effect on the woody species. Management, age and the doubling of fallow age influenced the herbaceous species richness and species diversity. Management showed no effect on soil seed bank species richness. Fallow age and the doubling of fallow time also showed no influence on the soil seed bank of grass species, but they were influential on the forbs species soil seed bank. The trends for restoration of plant species richness and diversity and grass seed bank in response to fallow age were positive‐linear, but they declined when the fallow ages were doubled. The exception was the forbs seed bank showed linear trends when age of restoration was doubled. The data suggest that the restoration of degraded rangelands in the high mountain zones of northern Ethiopia was still in the weedy succession stages. Long‐term monitoring will be required to gain an informed understanding of the roles played by area enclosures and fallow age in the restoration of plant biodiversity.  相似文献   

12.
Aim  To study how differences in species richness patterns of woody and herbaceous plants may be influenced by ecological and evolutionary factors. Unimodal species richness–productivity relationships (SRPRs) have been of interest to ecologists since they were first described three decades ago for British herbaceous vegetation by J. P. Grime. The decrease in richness at high productivity may be due to competitive exclusion of subordinate species, or diverse factors related to evolution and dispersal. Unimodal SRPRs are most often reported for plants, but there are exceptions. For example, unimodal SRPRs are common in the temperate zone but not in the tropics. Similarly, woody species and forest communities in the Northern Hemisphere do not tend to show unimodal SRPRs.
Location  Global.
Methods  We used data from the literature to test whether a unimodal SRPR applies to woody species and forest communities on a global scale. We explored whether the shape of SRPRs may be related to the lack of clonality in woody species (which may prevent their being competitively superior), or the legacy of evolutionary history (most temperate woody species originate from tropical lineages, and due to niche conservatism they may still demonstrate 'tropical patterns'). We used case studies that reported the names of the dominant or most abundant species for productive sites.
Results  Woody species were indeed less clonal than herbaceous species. Both clonality and the temperate evolutionary background of dominating species were associated with unimodality in SRPRs, with woodiness modifying the clonality effect.
Main conclusions  The unimodal SRPR has been common in the ecological literature because most such studies originate from temperate herbaceous communities with many clonal species. Consequently, both evolutionary and ecological factors may influence species richness patterns.  相似文献   

13.
Abstract. The physiognomy of dry savannas is described as a combination of discontinuous woody perennials and a continuous grassland matrix. Interactions between these two components are of vital importance for the persistence of a savanna landscape. Earlier savanna models have emphasized competitive interactions for water between the two components. Recent studies have argued that small-scale facilitating interactions between woody perennials and the herbaceous understorey are also important. This phenomenon has been given little theoretical consideration in the savanna literature, but it has been an important topic in agroforestry and arid-grassland ecology. This paper reviews some of the evidence for micro-site effects of trees and shrubs, and attempts to integrate their interactions with the surrounding open grassland. Woody perennials modify the microclimate by interception of solar radiation and rainfall. Their root systems extract nutrients horizontally and vertically, which are concentrated in the sub-canopy soil from litter decomposition and root turnover. Legumes are abundant in dry savannas, and may have symbiotic relationships with Rhizobium bacteria. This symbosis increases the availability of nitrogen in the soil. Isolated trees and shrubs initiate feedback mechanisms in their interactions with other organisms, and contribute to an uneven distribution of water and nutrients in dry savanna. This influences the species composition, and community diversity. Small-scale facilitating interaction between the woody and herbaceous components and competitive interaction on larger scales, are complementary processes which together explain a dynamic coexistence.  相似文献   

14.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

15.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

16.
Disentangling the multiple factors controlling species diversity is a major challenge in ecology. Island biogeography and environmental filtering are two influential theories emphasizing respectively island size and isolation, and the abiotic environment, as key drivers of species richness. However, few attempts have been made to quantify their relative importance and investigate their mechanistic basis. Here, we applied structural equation modelling, a powerful method allowing test of complex hypotheses involving multiple and indirect effects, on an island‐like system of 22 French Guianan neotropical inselbergs covered with rock‐savanna. We separated the effects of size (rock‐savanna area), isolation (density of surrounding inselbergs), environmental filtering (rainfall, altitude) and dispersal filtering (forest‐matrix openness) on the species richness of all plants and of various ecological groups (terrestrial versus epiphytic, small‐scale versus large‐scale dispersal species). We showed that the species richness of all plants and terrestrial species was mainly explained by the size of rock‐savanna vegetation patches, with increasing richness associated with higher rock‐savanna area, while inselberg isolation and forest‐matrix openness had no measurable effect. This size effect was mediated by an increase in terrestrial‐habitat diversity, even after accounting for increased sampling effort. The richness of epiphytic species was mainly explained by environmental filtering, with a positive effect of rainfall and altitude, but also by a positive size effect mediated by enhanced woody‐plant species richness. Inselberg size and environmental filtering both explained the richness of small‐scale and large‐scale dispersal species, but these ecological groups responded in opposite directions to altitude and rainfall, that is positively for large‐scale and negatively for small‐scale dispersal species. Our study revealed both habitat diversity associated with island size and environmental filtering as major drivers of neotropical inselberg plant diversity and showed the importance of plant species growth form and dispersal ability to explain the relative importance of each driver.  相似文献   

17.
Disturbances of the soil and the tree canopy are crucial factors determining the diversity, composition and biomass of the herbaceous layer in forests. This study presents a detailed account of ground vegetation in permanent plots surveyed before and after invasion of wild boar (Sus scrofa) to a temperate deciduous broadleaf forest. Specifically, we aimed to quantify the effect of wild boar rooting on cover, richness and composition of spring ephemerals, summer green herbs and saplings of woody species in relation to tree canopy cover. Rooting frequency in sample plots increased from 0% in 2010 to 61% in 2013. In heavily rooted plots, the mean cover of spring ephemeral geophytes (mainly Anemone nemorosa, A. ranunculoides and Ranunculus ficaria) decreased from 75% to 39% between 2010 and 2013. Species richness of summer green herbs generally increased between 2010 and 2013 and was additionally positively affected by heavy rooting and low canopy cover. Rooting also caused heterogenization of the herbaceous layer and amplified ongoing compositional changes induced by changing light conditions. Frequency and richness of spring ephemeral and woody species remained unchanged. We conclude that overall species richness of the herbaceous layer may increase in the short‐term as a result of increased plant recruitment and seed dispersal. However, wild boar rooting can greatly reduce the ground cover of spring ephemerals in eutrophic broadleaf forests, thereby threatening their important ecological function. To avoid long‐term losses of characteristic spring flora elements, local population control of wild boar is necessary to reduce abundance and frequency of soil rooting.  相似文献   

18.
The structure of woody vegetation was studied in little disturbed arid savanna and in adjacent over-grazed vegetation. In the over-grazed areas density and cover of woody plants were higher than in the less disturbed vegetation. The difference was accounted for by one species, Acacia mellifera, which was strongly dominant in the overgrazed vegetation. In the open savanna, the woody species varied in height from small shrubs to trees, while the dense shrub vegetation was of uniformly low stature.It is suggested that, while the differences in total abundance of woody species depend on differences in the amount of soil water available for woody growth, differences in species composition and height distribution are governed by the spatial and temporal distribution of water in the soil profile.  相似文献   

19.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

20.
Factors governing the dynamics between woody and herbaceous vegetation in the savanna are of ecological interest since they determine ecosystem productivity and stability. Field measurements were conducted in a humid savanna in the Lambwe valley, western Kenya, to compare CO2 exchange of the herbaceous vegetation and trees and its regulation. Soil characteristics and root distribution patterns under tree canopies and in the open locations dominated by the herbaceous vegetation were profiled in 1-m-deep soil layers. Soil water content (SWC) was measured at 30 cm depth both in the herbaceous vegetation and also under the tree canopies. The mean maximum monthly gross primary production (GPPmax) in the herbaceous vegetation was determined from chamber measurements, while daily GPP (GPPday) in both the grass and tree canopies was simulated using the PIXGRO model. The highest mean GPPmax in the herbaceous vegetation was 26.2 ± 3.7 μmol m-2 s-1 during April. Seasonal fluctuations of GPP in the herbaceous vegetation were explained by soil water availability (R 2 = 0.78) within the upper 30-cm soil profile. Seasonal GPPday fluctuations were larger (between 1 gC m-2 d-1 and 10 gC m-2 d-1) in the herbaceous vegetation compared to the trees, which fluctuated around 4.3 ± 0.3 gC m-2 d-1 throughout most of the measurement period. Daily tree canopy transpiration (Ec), canopy conductance (Gc), and GPPday were decoupled from SWC in the top 30-cm soil profile. On average, ecosystem GPPday (mean of tree and herbaceous vegetation) was 14.3 ± 1.2 gC m-2 d-1 during the wet period and 6.1 ± 0.9 gC m-2 d-1 during drought. Differences between the herbaceous and tree canopy responses were attributed to soil moisture availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号