首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lakes and their topological distribution across Earth's surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche‐ and dispersal‐based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context‐dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild‐based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad‐scale community gradients in lake‐rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool.  相似文献   

2.
Epilithon, epiphyton, epipelon, epipsammon and plocon diatom samples and water chemistry samples were collected bimonthly from 11 stations along the Mesta River, Bulgaria between December 1989 and April 1991. Principal component analysis (PCA), correlation, and dominance analysis were employed for describing the seasonal dynamics of diatom assemblages and estimating the correlation between diatom distribution and the physico-chemical parameters. All periphytic communities were compared by PCA, MANOVA and Fisher's LSD multiple comparison test. Ionic strength and eutrophication were the major abiotic factors affecting diatom distribution in the epilithon, epiphyton, epipelon and epipsammon. Current velocity had an important influence on the diatom assemblages from the epilithon and epiphyton. Epilithon showed the lowest correlation with most of the environmental factors and had significantly lower species diversity than epiphyton, epipelon and epipsammon. Multivariate analysis of the diatom data suggested that in all benthic habitats of the Mesta River seasonal replacement of diatom assemblages was controlled by the water chemistry rather than substratum, current velocity or discharge. The oligotrophic, mesotrophic and eutrophic diatom communities in the Mesta River comprised early-, mid- and late-successional colonizers respectively. Multiple comparisons of all periphytic communities showed that habitat specificity was positively correlated with current velocity.  相似文献   

3.
Functional-based assessments to identify the effects of human-induced disturbances on diatom communities are increasingly used. However, information on the response of functional groups to natural disturbances in temporary depressional wetlands is limited although important for the development of temporary wetland biological assessments. We assessed how diatom life-form and ecological guilds responded to a seasonal hydrological and hydrochemical gradient in three least human-disturbed, temporary depressional wetlands. We assigned species to their respective life-form and ecological guild groups and compared metric composition along the gradient. Overall, temporal variability in alkalinity and ionic composition, essentially Na+, as well as hydrological factors, wetland depth and total relative evapotranspiration (ETo), were good predictors of diatom species and functional group composition. Low profile guilds dominated by pioneer life-forms showed the strongest relationship with higher disturbance levels (i.e. increasing Na+, alkalinity with a decrease in depth). Similarly, the planktonic guild and tube-living, rosette and adnate life-forms dominated at higher disturbance levels whereas the high profile diatoms displayed the reverse trend. Our study shows the effectiveness of functional-based assessments beyond traditional species-based approaches for understanding and predicting community responses to temporal changes in environmental conditions. We also highlight the benefit of using both life-forms and ecological guilds where a broad set of metrics can enhance our understanding of the mechanisms relating diatom composition to environmental stressors and provide signs of underlying ecological processes.  相似文献   

4.
Classifying benthic diatom taxa based on ecological and morphological features became increasingly important in recent years due to the demand of understanding the dynamics and functioning of diatom assemblages. The great potential in using these functional classifications in diatom ecology involves further refinement of current classification. In our experimental study, colonisation processes of diatom assemblages were studied in a typical small lowland stream, using both diatom guilds and cell size categories. We also tested newly proposed combined eco-morphological functional groups (ecological guilds combined with cell size categories) in the study of the colonisation process in benthic diatom assemblages. We hypothesised that (i) there is a decrease in the proportion of low profile guild, while an increase in that of high profile and motile guilds in time with the decreasing rate of physical disturbance; (ii) the presence of small size categories will be pronounced at the beginning of the colonisation processes, while proportion of larger size categories will be higher in the latter phases of colonisation; and (iii) the relationship between taxa and environmental factors are better reflected by the use of combined eco-morphological functional groups than by the sole analyses of rough guilds or cell size categories. The first hypothesis was not confirmed, and our second hypothesis was only partially confirmed by the results. We found that the relationship between environmental factors and guilds, as well as cell size categories was not appropriate to reveal the relationship between abiotic factors and taxa composition. In contrast we found that compositional changes in colonisation were appropriately reflected by the newly defined combined eco-morphological functional groups. In the combined eco-morphological functional groups, such kind of taxonomical and ecological features can be prevailed which are hidden in guilds or cell size categories separately. Thus these combined eco-morphological functional groups could help to come one step closer to develop a widely used ecological classification in diatom researches.  相似文献   

5.
Although elevational patterns of species richness have been well documented, how the drivers of richness gradients vary across ecological guilds has rarely been reported. Here, we examined the effects of spatial factors (area and mid‐domain effect; MDE) and environmental factors, including metrics of climate, productivity, and plant species richness on the richness of breeding birds across different ecological guilds defined by diet and foraging strategy. We surveyed 12 elevation bands at intervals of 300 m between 1,800 and 5,400 m a.s.l using line‐transect methods throughout the wet season in the central Himalaya, China. Multiple regression models and hierarchical partitioning were used to assess the relative importance of spatial and environmental factors on overall bird richness and guild richness (i.e., the richness of species within each guild). Our results showed that richness for all birds and most guilds displayed hump‐shaped elevational trends, which peaked at an elevation of 3,300–3,600 m, although richness of ground‐feeding birds peaked at a higher elevation band (4,200–4,500 m). The Normalized Difference Vegetation Index (NDVI)—an index of primary productivity—and habitat heterogeneity were important factors in explaining overall bird richness as well as that of insectivores and omnivores, with geometric constraints (i.e., the MDE) of secondary importance. Granivore richness was not related to primary production but rather to open habitats (granivores were negatively influenced by habitat heterogeneity), where seeds might be abundant. Our findings provide direct evidence that the richness–environment relationship is often guild‐specific. Taken together, our study highlights the importance of considering how the effects of environmental and spatial factors on patterns of species richness may differ across ecological guilds, potentially leading to a deeper understanding of elevational diversity gradients and their implications for biodiversity conservation.  相似文献   

6.
7.
Classification of taxa into ecological guilds is based on the relation of respective taxa to nutrient enrichment and their resistance to physical disturbance. We hypothesized that ecological guild’s proportion and their taxa composition were strongly effected both by extremely changing water regime and nutrient contents. Diatom composition, guild dynamics and the diatom-based ecological status assessment index were studied in the Sebes-Körös River (South-East Hungary) in a year with extremely changing water regimes. There were highly pronounced changes in species composition during the whole vegetation period including the formation of running and standing water segments in autumn. While the proportions of ecological guilds showed no significant correlations with the studied environmental parameters, they were more balanced in high water discharge period than in the low water discharge period. Taxa compositions of segments were mainly determined by the preferences and strategies of a respective species and/or genera, regardless to their guild affiliation. These results point out that ecological guild characterisation should be refined using ecological knowledge at the subgenus level. We suggest to establish several subdivisions within the guilds to consider the differences in life strategies (CSR model) and life forms, and to implement the accumulated knowledge of nutrient preferences/indication of a respective taxa.  相似文献   

8.
The century-long research on succession has bestowed us with a number of theories, but little agreement on what causes species replacements through time. The majority of studies has explored the temporal trends of individual species in plant and much less so in microbial communities, arguing that interspecific interactions, especially competition, play a key role in community organization throughout succession. In this experimental investigation of periphytic succession in re-circulating laboratory streams, we examined the density and the relative abundance of diatoms and soft algae for 35 days across gradients of low to high nutrient supply (nitrogen + phosphorus) and low to intermediate current velocity (10 vs. 30 cm·s−1). All algal species were classified into trophic groups and morphological guilds, both of which responded more strongly to nutrient than current velocity manipulations, as shown by regression analyses. We concluded that within the manipulated environmental ranges: (1) Succession was a gradient of stress tolerance, driven primarily by nutrient supply and secondarily, by current velocity. Nutrient supply had a qualitative effect in determining whether the contribution of species tolerant vs. sensitive to nutrient limitation would increase through time, while current velocity had a quantitative influence and affected only the rate of this increase. (2) The mechanism of algal succession at a functional level was a neutral coexistence, whereby the tolerant low profile guild maintained high density when overgrown by sensitive species, while sensitive species, constituting mostly the motile and high profile guilds, were neither facilitated nor inhibited by tolerant species but controlled by the environment. It is suggested that the mechanism of succession may depend on the level of biological organization with interspecific interactions giving way to neutral coexistence along the hierarchy from species to functional groups. Considering that the functional makeup is strictly environmentally defined, while species composition reflects local and regional species pools that may exhibit substantial geographic variability, succession is deterministic at a functional level but stochastic at a species level.  相似文献   

9.
Genomic traits reflect the evolutionary processes that have led to ecological variation among extant organisms, including variation in how they acquire and use resources. Soil fungi have diverse nutritional strategies and exhibit extensive variation in fitness along resource gradients. We tested for trade-offs in genomic traits with mycelial nutritional traits and hypothesize that such trade-offs differ among fungal guilds as they reflect contrasting resource exploitation and habitat preferences. We found species with large genomes exhibited nutrient-poor mycelium and low GC content. These patterns were observed across fungal guilds but with varying explanatory power. We then matched trait data to fungal species observed in 463 Australian grassland, woodland and forest soil samples. Fungi with large genomes and lower GC content dominated in nutrient-poor soils, associated with shifts in guild composition and with species turnover within guilds. These findings highlight fundamental mechanisms that underpin successful ecological strategies for soil fungi.  相似文献   

10.
11.
How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in large bodied species in guilds where habitat structure provides protection from predators, but not in those guilds associated with open habitats and where safety in numbers is a mechanism for reducing predation risk. We further demonstrate that while there is temporal turnover in the abundances and identities of species that comprise these guilds, guild rank order is conserved across our 30-year time series. These results demonstrate that ecological communities are not randomly assembled but can be decomposed into guilds where capacity is predictably allocated among species.  相似文献   

12.
Epiphyton and epipelon were quantitatively collected, respectively, from the submerged macrophytes and the sandy lake bottom of Lake Vechten (The Netherlands). On a weight basis, epiphyton was maximal in autumn and epipelon in summer. In winter the chemical composition of epiphyton and epipelon was similar. In summer the epiphyton had on a unit weight basis more organic matter and carbonate, and had per unit organic matter a higher algal number, nitrogen and energy content than the epipelon. Algae predominating the epiphyton were filamentous greens and pennate diatoms; those in the epipelon were pennate diatoms and blue-green algae. In both cases, species known to frequent the phytoplankton were abundant. The diatoms were quantified using paper chromatographic pigment analyses. Both the epiphyton and the epipelon exhibited maximal photosynthesis in mid summer. That light was generally the limiting factor was evident from periphyton developed on artificial substrates. This periphyton differed widely in its composition from that on the natural substrates, mainly because the latter collected much more sedimenting matter.In dense Ceratophyllum stands light was severely attenuated and the significant gradients in oxygen and pH were caused by the differences with depth in the proportions of photosynthesis and respiration. The oxygen content and pH at the bottom decreased owing to epipelic respiration. The epiphytic composition depended greatly on the degree of light attenuation. The epiphytic and epipelic respiration, except during part of the early summer, exceeded photosynthesis on a 24 h basis; this included the macrophytic photosynthesis during the time the vegetation was maximally developed. During the growing season import of organic matter, i.e. deposited seston, greatly exceeded that due to the photosynthetic production. After the summer maximum, the epipelon decreased faster than predicted from its oxygen exchange. It was concluded that sedimentation and resuspension determined mainly the changes in epiphyton and epipelon. Especially when covered with vegetation, the lower littoral of Lake Vechten plays a large part in the aerobic decomposition of sestonic organic matter.  相似文献   

13.
湿地中的藻类生态学研究进展   总被引:7,自引:1,他引:6  
从湿地中藻类的种群结构、藻类在湿地中的功能、湿地中的藻类生产力及其影响因素等方面综述了天然湿地中的藻类生态学研究进展.湿地植物区系主要有附泥藻类、附植藻类、后周丛藻类和浮游植物4种类型,其中常见的是附泥藻类的硅藻、绿藻和蓝藻.藻类最显著的作用是作为湿地食物网中的初级生产者,也作为湿地环境污染的生物指示物.影响藻类生产力的因素有水力学因素、营养、温度、光、大型植物及草食动物和其它动物.未来对藻类的研究应侧重于湿地藻类生物多样性、藻类生物量、生产力、种群组成的环境控制及其相互关系,以及藻类作为水环境及湿地污染程度指标的研究,“基因治藻”也将是未来研究的新方向.  相似文献   

14.
Aim To integrate dietary knowledge and species distributions in order to examine the latitudinal, environmental, and biogeographical variation in the species richness of avian dietary guilds (herbivores, granivores, frugivores, nectarivores, aerial insectivores, terrestrial/arboreal insectivores, carnivores, scavengers, and omnivores). Location Global. Methods We used global breeding range maps and a comprehensive dietary database of all terrestrial bird species to calculate guild species richness for grid cells at 110 × 110 km resolution. We assessed congruence of guild species richness, quantified the steepness of latitudinal gradients and examined the covariation between species richness and climate, topography, habitat diversity and biogeographic history. We evaluated the potential of current environment and biogeographic history to explain global guild distribution and compare observed richness–environment relationships with those derived from random subsets of the global species pool. Results While most guilds (except herbivores and scavengers) showed strong congruence with overall bird richness, covariation in richness between guilds varied markedly. Guilds exhibited different peaks in species richness in geographical and multivariate environmental space, and observed richness–environment relationships mostly differed from random expectations. Latitudinal gradients in species richness were steepest for terrestrial/arboreal insectivores, intermediate for frugivores, granivores and carnivores, and shallower for all other guilds. Actual evapotranspiration emerged as the strongest climatic predictor for frugivores and insectivores, seasonality for nectarivores, and temperature for herbivores and scavengers (with opposite direction of temperature effect). Differences in species richness between biogeographic regions were strongest for frugivores and nectarivores and were evident for nectarivores, omnivores and scavengers when present‐day environment was statistically controlled for. Guild richness–environment relationships also varied between regions. Main conclusions Global associations of bird species richness with environmental and biogeographic variables show pronounced differences between guilds. Geographic patterns of bird diversity might thus result from several processes including evolutionary innovations in dietary preferences and environmental constraints on the distribution and diversification of food resources.  相似文献   

15.
In the context of global environmental changes, Mediterranean rivers are considered highly endangered. Temporal and spatial increases of the dry stretches during the summer lead to the loss of river tridimensional connectivity, which represents a major threat for freshwater biodiversity. In this study, we aimed at exploring the response of diatom communities to summer droughts by analyzing taxonomical composition, specific ecological requirements, ecological guilds and percentages of endangered species. The evolution of diatom communities was monitored under both intermediate and intermittent flows, with traditional and innovative sampling procedures, i.e. collecting diatoms from transects and microhabitats, respectively. Microhabitats differed in terms of water velocity, substrate, isolation and presence of macrophytes. Diatom flora was mainly composed of β-mesasoprobous taxa. We highlighted an increase of species considered as aerophilous and planktonic in sites characterized by intermittent flow. In general, ecological guilds did not respond to hydrological disturbance as expected. Statistical models identified the maintenance of a minimum of 0.20 m/s flow velocity as the main factor influencing the abundance of endangered species. Conversely, flow instability, lentification and habitat fragmentation represented the major threats for endangered species. In conclusion, diatoms can provide useful information to improve river management practices when faced with an increasing water scarcity scenario. Water stability and river habitat heterogeneity strongly favor the presence of endangered diatom species. In the absence of these conditions, isolated pools surrounded by dry riverbed are very important habitats to be preserved, representing the only refugia for benthic diatom communities during summer.  相似文献   

16.
Grime's CSR species life‐strategy theory (competition–stress–ruderality) provides a conceptual framework to classify species into competitive (growing under high productivity, low disturbance), stress‐tolerant (low productivity, low disturbance) and ruderal (high productivity, high disturbance). Importantly, this classification is based on the assumption that the niche space of disturbance and productivity is filled unevenly: while in productive habitats species can adapt to different disturbance regimes, species of low‐productivity and disturbed habitats do not exist, resulting in a triangular distribution of species optima along axes of disturbance and productivity. This assumption has often been criticised, but it has not yet been put under a rigorous test. Here we use existing data on niche positions of central European plant species to test this hypothesis, namely its prediction that species adapted to jointly stressed (low‐productive) and disturbed habitats do not exist. We use Ellenberg indicator values and newly developed indicator values for disturbance as proxies of species positions in the space of productivity and disturbance. We found that positions of species optima along the gradients of productivity and disturbance severity are not independent of each other, with very few species adapted to low‐productive and severely disturbed habitats. In contrast, there is no relationship between productivity and disturbance frequency; a number of species occur in low‐productive and frequently disturbed habitats. The relationship between productivity and disturbance severity can be either due to tradeoffs between life history traits responsible for response to disturbance and productivity (as originally assumed by Grime) or due to historical rarity of severely disturbed habitats in unproductive conditions and consequent absence of evolution of species adapted to them. Our data are based on one specific flora, shaped by glaciations and early introduction of agriculture, but the question of what causes this pattern can be resolved by future analyses of floras with different evolutionary and ecological histories.  相似文献   

17.
18.
Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC(5)) and the Effective Concentration 50 (EC(50)) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC(5)) and 50 (HC(50)). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and "motile" guild species were more tolerant of PSII inhibitors, while N-autotroph and "low profile" guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron.  相似文献   

19.
The persistence of pesticides in the environment and their effects are a cause of concern to more and more people, and so in 2009 the French government announced plans to reduce pesticide use in agriculture over the next 10 years. Water managers are to monitor the beneficial impact of this reduction on aquatic environments. It has been suggested that diatoms may be good indicators of pesticides, and more particularly of herbicides, in water. Diatoms have been routinely used to assess organic and nutrient pollution for more than 10 years. The general approach is to develop a diatom-based tool to assess pesticide contamination. Diatom indices are usually based on specific pollution sensitivity. Other metrics, such as life-forms, ecological guilds, or cell size offer other advantages. For instance, the relationships between trends in these metrics and environmental gradients are more robust, and make it easier to establish ecological hypotheses. We have therefore opted for this approach.To develop such a tool, outdoor, lotic mesocosm experiments lasting about 2 months were conducted from 2006 to 2008. Herbicides (diuron) and fungicides (azoxystrobin, tebuconazole) were tested at environmental concentrations (sum of pesticides concentrations from 1.11 to 3.01 μg L?1 for chronic pollutions and from 20.25 to 29.50 μg L?1 for short-term acute pollutions). Diatom communities in artificial channels were analyzed by light microscopy using standard European methods. The various parameters structuring diatom communities were assessed, and colonization time appeared to be the most important. However, pesticide contamination was the second most important, and had a more significant impact on the composition of ecological guilds than on species composition. Some metrics did not display any significant trends (benthic/planktonic, colonial, pedunculate, pioneer), but others looked promising for use in pesticide contamination assessment: the abundances of motile guild, low-profile guild and mucous tubule diatoms all increased in contaminated channels, whereas high-profile diatoms showed the opposite trend. Some possible explanations, such as a protective effect of the exopolysaccharide matrix, can be advanced: diatoms living inside a mucous tubule may be shielded from dissolved pesticides, as are motile diatoms, which have a micro-habitat preference for thick matrices which also allows them to withstand higher levels of water contamination. In the same way, high-profile guild diatoms are exposed to dissolved pesticides to a greater extent, and this could explain their lower abundance in contaminated channels.  相似文献   

20.

Macrophytes and phytoplankton are recognized as having roles in determining alternative stable states in shallow lakes and reservoirs, while the role of periphyton has been poorly investigated. Temporal and spatial variation of phytoplankton, epipelon and epiphyton was examined in a shallow reservoir with high abundance of aquatic macrophytes. The relationships between algae communities and abiotic factors, macrophyte coverage and zooplankton density were also analyzed. Monthly sampling was performed in three zones of the depth gradient of the reservoir. Two phases of algal dominance were found: a phytoplankton phase and epipelon phase. The phase of phytoplankton dominance was characterized by high macrophyte coverage. Rotifera was the dominant zooplankton group in all the zones. Flagellate algae were dominant in phytoplankton, epipelon and epiphyton. Macrophyte coverage was found to be a predictor for algal biomass. Changes in biomass and species composition were associated with macrophyte cover variation, mainly the Nymphaea. In addition to the abiotic factors, the macrophyte coverage was a determining factor for changes to the algal community, contributing to the alternation between dominance phases of phytoplankton and epipelon. The macrophyte–phytoplankton–periphyton relationship needs to be further known in shallow reservoirs, especially the role of epipelon as an alternate stable state.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号