首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stilbenes are considered the most important phytoalexin group in grapevine (Vitis vinifera) and they are known to contribute to the protection against various pathogens. The main stilbenes in grapevine are resveratrol and its derivatives and, among these, pterostilbene has recently attracted much attention due both to its antifungal and pharmacological properties. Indeed, pterostilbene is 5 to 10 times more fungitoxic than resveratrol in vitro and recent studies have shown that pterostilbene exhibits anticancer, hypolipidemic, and antidiabetic properties. A candidate gene approach was used to identify a grapevine resveratrol O-methyltransferase (ROMT) cDNA and the activity of the corresponding protein was characterized after expression in Escherichia coli. Transient coexpression of ROMT and grapevine stilbene synthase in tobacco (Nicotiana benthamiana) using the agroinfiltration technique resulted in the accumulation of pterostilbene in tobacco tissues. Taken together, these results showed that ROMT was able to catalyze the biosynthesis of pterostilbene from resveratrol both in vitro and in planta. ROMT gene expression in grapevine leaves was induced by different stresses, including downy mildew (Plasmopara viticola) infection, ultraviolet light, and AlCl(3) treatment.  相似文献   

2.
Grapevine stilbenes, particularly trans‐resveratrol, have a demonstrated pharmacological activity. Other natural stilbenes derived from resveratrol such as pterostilbene or piceatannol, display higher oral bioavailability and bioactivity than the parent compound, but are far less abundant in natural sources. Thus, to efficiently obtain these bioactive resveratrol derivatives, there is a need to develop new bioproduction systems. Grapevine cell cultures are able to produce large amounts of easily recoverable extracellular resveratrol when elicited with methylated cyclodextrins and methyl jasmonate. We devised this system as an interesting starting point of a metabolic engineering‐based strategy to produce resveratrol derivatives using resveratrol‐converting enzymes. Constitutive expression of either Vitis vinifera resveratrol O‐methyltransferase (VvROMT) or human cytochrome P450 hydroxylase 1B1 (HsCYP1B1) led to pterostilbene or piceatannol, respectively, after the engineered cell cultures were treated with the aforementioned elicitors. Functionality of both gene products was first assessed in planta by Nicotiana benthamiana agroinfiltration assays, in which tobacco cells transiently expressed stilbene synthase and VvROMT or HsCYP1B1. Grapevine cell cultures transformed with VvROMT produced pterostilbene, which was detected in both intra‐ and extracellular compartments, at a level of micrograms per litre. Grapevine cell cultures transformed with HsCYP1B1 produced about 20 mg/L culture of piceatannol, displaying a sevenfold increase in relation to wild‐type cultures, and reaching an extracellular distribution of up to 45% of total production. The results obtained demonstrate the feasibility of this novel system for the bioproduction of natural and more bioactive resveratrol derivatives and suggest new ways for the improvement of production yields.  相似文献   

3.
4.
Pterostilbene, a methoxylated analogue of resveratrol, is a natural compound primarily found in blueberries and several types of grapes. However, little is known about the effect of pterostilbene on the proliferation of hepatoma cells and its modes of actions. This study was undertaken to characterize its ability to suppress the proliferation of hepatoma AH109A cells and the possible mechanism(s) involved. Pterostilbene showed a significant and dose-dependent effect on the anti-proliferative activity against AH109A cells. Pterostilbene exerted little or no effect on the proliferation of rat L6 myoblasts and rat skin fibroblasts. Pterostilbene-loaded rat sera could significantly inhibit the proliferation of AH109A cells, which suggests that pterostilbene could be absorbed through gastrointestinal tract and retain its anti-proliferative activity. Pterostilbene arrested the cell cycle of AH109A cells at G0/G1 phase and reduced the protein expression of cyclin-dependent kinase 4 and cyclin-dependent kinase 6 dose-dependently. We also found that pterostilbene could significantly increase the intracellular peroxide level of AH109A cells, which may be involved in its anti-proliferative activity.  相似文献   

5.
Pterostilbene, a naturally occurring analog of resveratrol, has previously shown PPARalpha activation in H4IIEC3 cells and was found to decrease cholesterol levels in animals. In this study, analogs of pterostilbene were synthesized and their ability to activate PPARalpha was investigated. Among analogs that was synthesized (E)-4-(3,5-dimethoxystyryl)phenyl dihydrogen phosphate showed activity higher than pterostilbene and control drug ciprofibrate. Docking of the stilbenes inside PPARalpha showed the presence of important hydrogen bond interactions for PPARalpha activation.  相似文献   

6.
The phenolic phytoalexin resveratrol is well known for its health-promoting and anticancer properties. Its potential benefits are, however, limited due to its low bioavailability. Pterostilbene, a natural dimethoxylated analog of resveratrol, presents higher anticancer activity than resveratrol. The mechanisms by which this polyphenol acts against cancer cells are, however, unclear. Here, we show that pterostilbene effectively inhibits cancer cell growth and stimulates apoptosis and autophagosome accumulation in cancer cells of various origins. However, these mechanisms are not determinant in cell demise. Pterostilbene promotes cancer cell death via a mechanism involving lysosomal membrane permeabilization. Different grades of susceptibility were observed among the different cancer cells depending on their lysosomal heat shock protein 70 (HSP70) content, a known stabilizer of lysosomal membranes. A375 melanoma and A549 lung cancer cells with low levels of HSP70 showed high susceptibility to pterostilbene, whereas HT29 colon and MCF7 breast cancer cells with higher levels of HSP70 were more resistant. Inhibition of HSP70 expression increased susceptibility of HT29 colon and MCF7 breast cancer cells to pterostilbene. Our data indicate that lysosomal membrane permeabilization is the main cell death pathway triggered by pterostilbene.  相似文献   

7.
Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a dimethylated analog of resveratrol and has been reported to exert various pharmacological effects. In this study, we evaluated the effect of pterostilbene on the pathogenesis of obesity and energy metabolism in obese rats.Pterostilbene significantly activates silent mating type information regulation 2 homolog-1 and peroxisome proliferator-activated receptor-alpha in vitro. At 4 weeks a 0.5% pterostilbene diet markedly suppressed the abdominal white adipose tissue (WAT) accumulation in obese rats. The oxygen consumption and energy expenditure were significantly higher in the pterostilbene group, and pterostilbene increased the fat metabolism rather than the carbohydrate metabolism in obese rats. The mRNA level of uncoupling protein, a thermogenic regulator, was increased and the mRNA levels of fatty acid synthase and leptin, which are involved in lipogenesis and fat storage, were markedly decreased in WAT after the pterostilbene feeding. These results suggest that pterostilbene prevents WAT accumulation through the enhancement of energy metabolism and partly the suppression of lipogenesis in obese OLETF rats.  相似文献   

8.
9.
With the prevalence of novel strains and drug-resistant influenza viruses, there is an urgent need to develop effective and low-toxicity anti-influenza therapeutics. Regulation of the type I interferon antiviral response is considered an attractive therapeutic strategy for viral infection. Pterostilbene, a 3,5-dimethoxy analog of resveratrol, is known for its remarkable pharmacological activity. Here, we found that pterostilbene effectively inhibited influenza A virus infection and mainly affected the late stages of viral replication. A mechanistic study showed that the antiviral activity of pterostilbene might promote the induction of antiviral type I interferon and expression of its downstream interferon-stimulated genes during viral infection. The same effect of pterostilbene was also observed in the condition of polyinosinic-polycytidylic acid (poly I:C) transfection. Further study showed that pterostilbene interacted with influenza non-structural 1 (NS1) protein, inhibited ubiquitination mediated degradation of RIG-I and activated the downstream antiviral pathway, orchestrating an antiviral state against influenza virus in the cell. Taken together, pterostilbene could be a promising anti-influenza agent for future antiviral drug exploitation and compounds with similar structures may provide new options for the development of novel inhibitors against influenza A virus (IAV).  相似文献   

10.
Resveratrol and related stilbenes are thought to play important roles in defence responses in several plant species and have also generated considerable interest as nutraceuticals owing to their diverse health-promoting properties. Pterostilbene, a 3,5-dimethylether derivative of resveratrol, possesses properties similar to its parent compound and, additionally, exhibits significantly higher fungicidal activity in vitro and superior pharmacokinetic properties in vivo. Recombinant enzyme studies carried out using a previously characterized O-methyltransferase sequence from Sorghum bicolor (SbOMT3) demonstrated its ability to catalyse the A ring-specific 3,5-bis-O-methylation of resveratrol, yielding pterostilbene. A binary vector was constructed for the constitutive co-expression of SbOMT3 with a stilbene synthase sequence from peanut (AhSTS3) and used for the generation of stably transformed tobacco and Arabidopsis plants, resulting in the accumulation of pterostilbene in both species. A reduced floral pigmentation phenotype observed in multiple tobacco transformants was further investigated by reversed-phase HPLC analysis, revealing substantial decreases in both dihydroquercetin-derived flavonoids and phenylpropanoid-conjugated polyamines in pterostilbene-producing SbOMT3/AhSTS3 events. These results demonstrate the potential utility of this strategy for the generation of pterostilbene-producing crops and also underscore the need for the development of additional approaches for minimizing concomitant reductions in key phenylpropanoid-derived metabolites.  相似文献   

11.
In recent years, much attention has been paid by the scientific community to phenolic compounds as active biomolecules naturally present in foods. Pterostilbene is a resveratrol dimethylether derivative which shows higher bioavailability. The aim of the present study was to analyze the effect of pterostilbene on brown adipose tissue thermogenic markers in a model of genetic obesity, which shows reduced thermogenesis. The experiment was conducted with 30 Zucker (fa/fa) rats that were distributed in three experimental groups: control and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of uncoupling protein 1 (Ucp1), peroxisome proliferator-activated receptor γ co-activator 1 α (Pgc-1α), carnitine palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor α (Pparα), nuclear respiratory factor 1 (Nfr1), and cyclooxygenase-2 (Cox-2); protein expression of PPARα, PGC-1α, p38 mitogen-activated protein kinase (p38 MAPK), UCP1 and glucose transporter (GLUT4); and enzyme activity of CPT 1b and citrate synthase (CS) were assessed in interscapular brown adipose tissue. With the exception of Pgc-1α expression, all these parameters were significantly increased by pterostilbene administration. These results show for the first time that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the antiobesity properties of these compound needs further research.  相似文献   

12.
The antifungal effect of three furyl compounds closely related to resveratrol, (E)-3,4,5-trimethoxy-β-(2-furyl)-styrene (1), (E)-4-methoxy-β-(2-furyl)-styrene (2) and (E)-3,5-dimethoxy-β-(2-furyl)-styrene (3) against Botrytis cinerea was analyzed. The inhibitory effect, at 100 μg ml(-1) of compounds 1, 2, 3 and resveratrol on conidia germination, was determined to be about 70%, while at the same concentration pterostilbene (a dimethoxyl derivative of resveratrol) produced complete inhibition. The title compounds were more fungitoxic towards in vitro mycelial growth than resveratrol and pterostilbene. Compound 3 was the most active and a potential explanation of this feature is given using density functional theory (DFT) calculations on the demethoxylation/demethylation process. Compound 3 was further evaluated for its effects on laccase production, oxygen consumption and membrane integrity of B. cinerea. An increase of the laccase activity was observed in the presence of compound 3 and, using Sytox Green nucleic acid stain, it was demonstrated that this compound altered B. cinerea membrane. Finally, compound 3 partially affected conidia respiration.  相似文献   

13.
Resveratrol (3,5,4′-trihydroxystilbene) is of interest due to its role in prevention and therapy of degenerative diseases as cancer and aging. However, depending on its concentration and cell type studied, resveratrol activity appears conflicting. It exerts antioxidant action, as a scavenger of free radicals and as promoter of antioxidant enzyme activity, but resveratrol acts also as a pro-oxidant. Here we present experimental and theoretical studies for resveratrol and two methoxy-derivatives found in plants, pterostilbene and 3,5,4′-trimethoxystilbene. We show that both methoxy-derivatives induce less DNA damage than resveratrol. The protective effects of the three molecules against oxidative DNA damage induced by hydrogen peroxide treatment were analyzed on mammalian cells in vitro. Our data show for the first time that methoxylated derivatives of resveratrol are very efficient in reducing DNA damage: using the same concentration of the three molecules we obtain a relative reduction of 85.5% (pterostilbene), 43.7% (trimethoxystilbene) and 21.1% (resveratrol). Analysis of the crystal structures of pterostilbene and 3,5,4′-trimethoxystilbene, compared to resveratrol, show fewer intermolecular interactions and a lack of planarity, due to packing forces, which is confirmed by density functional theory (DFT) calculations. We also describe the results of DFT calculations (including water solvent effects) in which the three stilbene species scavenge the hydroxyl radical (associated with the H2O2 insult).  相似文献   

14.
The inhibitory effects of 21 resveratrol derivatives on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in microglia and their structure-activity relationships were studied. It was found, for the first time, that certain resveratrol derivatives that have 3,5-dimethoxyl groups in the A-ring, such as (E)-4-(3,5-dimethoxystyryl)phenol (pterostilbene, compound 2), or have substituted the B-ring of resveratrol with quinolyl, such as (E)-5-[2-(quinolin-4-yl)vinyl]benzene-1,3-diol (compound 18) and (E)-4-(3,5-dimethoxystyryl)quinoline (compound 19), strongly inhibited NO production. Compounds 2, 18, and 19 reduced LPS-induced protein and mRNA expression of inducible NO synthase (iNOS), but did not display direct NO-scavenging activity up to 30 microM in sodium nitroprusside (SNP) solution. Moreover, compounds 2, 18, and 19 could also significantly inhibit the production of TNF-alpha by LPS-activated microglia. Further studies revealed that compounds 2, 18, and 19 inhibited LPS-induced NO and TNF-alpha production in microglia by blocking IkappaBalpha phosphorylation and degradation. The potent inhibitory effects of compounds 2, 18, and 19 on microglial activation suggest their potential for treatment of neurodegenerative diseases accompanied by microglial activation.  相似文献   

15.
Pterostilbene, being extracted from many plants, has significant biological activities in preventing cancer, diabetes, and cardiovascular diseases so as to have great potential applications in pharmaceutical fields. But the poor solubility and stability of pterostilbene strictly restrained its applications. As a good protection and oral delivery system, an optimal nanoemulsion for pterostilbene was developed by using low-energy emulsification method. Systematic pseudo-ternary phase diagrams have been studied in optimization of nanoemulsion formulations. The prepared pterostilbene nanoemulsion was characterized by transmission electron microscope, Fourier transform Raman spectrum, and laser droplet size analyzer. Nanoemulsion droplets are circular with smooth margin, and the mean size is 55.8 ± 10.5 nm. The results illustrated that the nanoemulsion as oral delivery system dramatically improved the stability and solubility of pterostilbene, and in vitro release of pterostilbene was significantly improved (96.5% in pH 3.6 buffer; 13.2% in pH 7.4 buffer) in comparison to the pterostilbene suspension (lower than 21.4% in pH 3.6 buffer; 2.6% in pH 7.4 buffer).KEY WORDS: 3,5-dimethoxyl-4′-hydroxystilbene, nanoemulsion, pseudo-ternary phase diagram, pterostilbene, release study  相似文献   

16.
An inducible antifungal compound in grapevine leaves (Vitis vinifera L., cv Cabernet-Sauvignon) has been identified as trans-pterostilbene (3,5-dimethoxy-4′-hydroxy stilbene). It is only a minor component of the phytoalexin response of V. vinifera but its antifungal activity is relatively high by comparison with resveratrol and the viniferins, stress metabolites which have been identified previously in grapevine. Methods for the quantitative analysis of pterostilbene, resveratrol, ε- and α-viniferins by HPLC are described.  相似文献   

17.
The phosphodiesterase-4 (PDE4) enzyme is a promising therapeutic target for several diseases. Our previous studies found resveratrol and moracin M to be natural PDE4 inhibitors. In the present study, three natural resveratrol analogs [pterostilbene, (E)-2′,3,5′,5-tetrahydroxystilbene (THSB), and oxyresveratrol] are structurally related to resveratrol and moracin M, but their inhibition and mechanism against PDE4 are still unclear. A combined method consisting of molecular docking, molecular dynamics (MD) simulations, binding free energy, and bioassay was performed to better understand their inhibitory mechanism. The binding pattern of pterostilbene demonstrates that it involves hydrophobic/aromatic interactions with Phe340 and Phe372, and forms hydrogen bond(s) with His160 and Gln369 in the active site pocket. The present work also reveals that oxyresveratrol and THSB can bind to PDE4D and exhibits less negative predicted binding free energies than pterostilbene, which was qualitatively validated by bioassay (IC50 = 96.6, 36.1, and 27.0 μM, respectively). Additionally, a linear correlation (R2 = 0.953) is achieved for five PDE4D/ligand complexes between the predicted binding free energies and the experimental counterparts approximately estimated from their IC50 values (≈RT ln IC50). Our results imply that hydrophobic/aromatic forces are the primary factors in explaining the mechanism of inhibition by the three products. Results of the study help to understand the inhibitory mechanism of the three natural products, and thus help the discovery of novel PDE4 inhibitors from resveratrol, moracin M, and other natural products.  相似文献   

18.
We previously reported that the SbROMT3syn recombinant protein catalyzes the production of the methylated resveratrol derivatives pinostilbene and pterostilbene by methylating substrate resveratrol in recombinant E. coli. To further study the production of stilbene compounds in E. coli by the expression of enzymes involved in stilbene biosynthesis, we isolated three stilbene synthase (STS) genes from rhubarb, peanut, and grape as well as two resveratrol O-methyltransferase (ROMT) genes from grape and sorghum. The ability of RpSTS to produce resveratrol in recombinant E. coli was compared with other AhSTS and VrSTS genes. Out of three STS, only AhSTS was able to produce resveratrol from p-coumaric acid. Thus, to improve the solubility of RpSTS, VrROMT, and SbROMT3 in E. coli, we synthesized the RpSTS, VrROMT and SbROMT3 genes following codon-optimization and expressed one or both genes together with the cinnamate/4-coumarate:coenzyme A ligase (CCL) gene from Streptomyces coelicolor. Our HPLC and LC-MS analyses showed that recombinant E. coli expressing both ScCCL and RpSTSsyn led to the production of resveratrol when p-coumaric acid was used as the precursor. In addition, incorporation of SbROMT3syn in recombinant E. coli cells produced resveratrol and its mono-methylated derivative, pinostilbene, as the major products from p-coumaric acid. However, very small amounts of pterostilbene were only detectable in the recombinant E. coli cells expressing the ScCCL, RpSTSsyn and SbROMT3syn genes. These results suggest that RpSTSsyn exhibits an enhanced enzyme activity to produce resveratrol and SbROMT3syn catalyzes the methylation of resveratrol to produce pinostilbene in E. coli cells.  相似文献   

19.
Xu Y  Xu TF  Zhao XC  Zou Y  Li ZQ  Xiang J  Li FJ  Wang YJ 《Protoplasma》2012,249(3):819-833
Plant secondary metabolites, such as stilbenes, have fungicidal potential and have been found in several plant species. Stilbenes in grapevine, such as resveratrol and pterostilbene, have recently attracted much attention, they are not only helping the plant to fight against pathogen attack, but they are also being widely used as ingredients of fungicide, anti-inflammatory drugs, antioxidant, and anti-infective agents. However, resveratrol O-methyltransferase gene, related with the synthesis of pterostilbene from resveratrol, has not been characterized effectively from Chinese wild Vitis pseudoreticulata. In this study, a candidate of resveratrol O-methyltransferase gene designated as VpROMT was isolated from a powdery mildew-resistant Chinese wild V. pseudoreticulata 'Baihe-35-1', and characterization studies were performed. Expression studies showed that VpROMT was predominantly expressed in developing roots yet not found in the leaves, stems, nor tendrils when the plants are not challenged. Results of qRT-PCR showed that VpROMT was rapidly induced by Erysiphe necator in V. pseudoreticulata and by methyl-jasmonate, UV-irradiation in suspension culture cells of Vitis romanetii. The expression level varies in different tissues of grapevine, which MeJA and UV-C treatment significantly upregulated the expression of VpROMT gene while UV-B treatment failed to. Co-expression of VpROMT and grapevine stilbene synthase (VpSTS) gene leads to the accumulation of pterostilbene in leaves of tobacco (Nicotiana tabacum) indicating that VpROMT was able to catalyze the biosynthesis of pterostilbene from resveratrol in over-expression transgenic tobacco plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号