首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Development of diabetes is associated with altered expression of adenosine receptors (ARs). Some of these alterations might be attributed to changes in insulin concentration. This study was undertaken to investigate the possible insulin effect on ARs level, and to determine the signaling pathway utilized by insulin to regulate the expression of ARs in rat B lymphocytes. Western blot analysis of B lymphocytes protein extracts indicated that all four ARs were present at detectable levels in the cells cultured for 24 h without insulin (≤10?11 M), although the protein band of A2A‐AR was barely visible. Inclusion of insulin (10?8 M) in the culture medium resulted in an increase of A1‐AR and A2A‐AR protein levels and a significant decrease of A2B‐AR protein, whereas the protein level of A3‐AR remained unchanged. Alterations in the ARs protein content were accompanied by changes in the ARs mRNA levels. Increase of the insulin concentration from 10?11 to 10?8 M resulted in 50% decrease of A2B‐AR mRNA level and two‐, and threefold increase of A1‐AR and A2A‐AR mRNA levels, respectively. Pretreatment of B cells with cycloheximide completely blocked the insulin action on A1‐AR and A2A‐AR mRNA, but not on A2B‐AR expression. Detailed pharmacological analysis demonstrated that insulin‐induced A1‐AR and A2A‐AR mRNA expression through the Ras/Raf‐1/MEK/ERK pathway. The insulin effect on A2B‐AR expression was blocked by p38 MAP kinase inhibitor (SB 203580). Concluding, elevated insulin concentration differentially affects the expression of ARs in B lymphocytes in a fashion that might enhance the various immunomodulatory effects of adenosine. J. Cell. Biochem. 109: 396–405, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Context: Insulin is one of the most-known factors that influence the intensity of cell-bound glucose transport. However, in order to react to this hormone, a cell needs specific receptors present in its membrane. The aim of this work was to investigate the insulin receptor expression in B and T cells under incubation with pathological glucose concentrations, respond hyperglycemia and hypoglycemia.

Materials and Methods: Isolated B and T cells were cultivated in different concentrations of glucose (high, low and normal). The expression of insulin receptors was investigated using methods of immunocytochemistry and flow cytometry.

Results: Incubation for 24?h of lymphocytes in pathological glucose concentrations seems to only have a slight influence on the expression of insulin receptors. No insulin receptor expression has been found in lymphocytes T incubated in both pathological concentrations of glucose. Different concentrations of glucose in the incubation medium were found to only marginally influence expression of insulin receptors in lymphocytes B.

Conclusions: Pathological concentrations of glucose in medium cause a decrease in the percent of cells which show expression of insulin receptors in comparison with normal glucose concentration. Thus, it appears highly probable that the insulin receptors did not arise under pathological glucose concentration in these cells de novo, but in little percent lymphocytes have existed there earlier, before the incubation.  相似文献   

3.
Adenosine among other factors is known to regulate the growth and function of cardiac fibroblasts (CFs). Its action is mediated by cell-surface receptors linked to a variety of signaling systems. The goal of present work was to examine the effects of glucose and insulin on adenosine receptors (ARs) mRNA and protein level in primary culture of rat CFs by means of real-time PCR and Western blot. Elevated glucose level increased the expression of A(1)-AR, A(2A)-AR, decreased the expression of A(3)-AR, and had no effect on A(2B)-AR expression. On the other hand insulin suppressed the expression of A(1)-AR, and A(2B)-AR, and had no effect on A(2A)-AR and A(3)-AR expression. Our measurements showed that accumulation of cAMP in response to ARs agonists correlated well with the changes in receptors expression level. These results indicate that changes in glucose and insulin level independently and differentially regulate the ARs expression and functional state in CFs.  相似文献   

4.
Adenosine, a neuromodulator of the CNS, activates inhibitory-A1 receptors and facilitatory-A2A receptors; its synaptic levels are controlled by the activity of bi-directional equilibrative nucleoside transporters. To study the relationship between the extracellular formation/inactivation of adenosine and the activation of adenosine receptors, we investigated how A1 and A2A receptor activation modifies adenosine transport in hippocampal synaptosomes. The A2A receptor agonist, CGS 21680 (30 nm), facilitated adenosine uptake through a PKC-dependent mechanism, but A1 receptor activation had no effect. CGS 21680 (30 nm) also increased depolarization-induced release of adenosine. Both effects were prevented by A2A receptor blockade. A2A receptor-mediated enhancement of adenosine transport system is important for formatting adenosine neuromodulation according to the stimulation frequency, as: (1) A1 receptor antagonist, DPCPX (250 nm), facilitated the evoked release of [(3)H]acetylcholine under low-frequency stimulation (2 Hz) from CA3 hippocampal slices, but had no effect under high-frequency stimulation (50 Hz); (2) either nucleoside transporter or A2A receptor blockade revealed the facilitatory effect of DPCPX (250 nm) on [3H]acetylcholine evoked-release triggered by high-frequency stimulation. These results indicate that A2A receptor activation facilitates the activity of nucleoside transporters, which have a preponderant role in modulating the extracellular adenosine levels available to activate A1 receptors.  相似文献   

5.
The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 microg/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10 U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.  相似文献   

6.
The effects of an increase in intracellular cAMP concentration on proteoglycan (PG) synthesis by peritubular (PT) cells from immature rat testis were investigated. In the presence of dBcAMP for 72 h, the [3H]-hexosamine incorporation in secreted PG and in cellassociated PG was reduced, whereas [35S]-sulfate radioactivity was enhanced in secreted PG and not affected in cell-associated PG. Cholera toxin and IBMX, known to generate high intracellular cAMP levels, induced similar changes. Cyclic AMP did not alter PG protein moiety synthesis but enhanced PG turnover. Cholera toxin and dBcAMP profoundly modified PG characteristics: (1) Apparent molecular weight of PG was increased. (2) This was due to an increase in glycosaminoglycans (heparan sulfate (HS) and chondroitin sulfate (CS)) length. (3) The number of glycosaminoglycan chains was presumably reduced. (4) Heparan sulfate and chondroitin sulfate chains of medium and cell layer-associated PG appeared oversulfated. (5) The pattern of cell layer associated PG was modified with a decrease in HSPG and a correlative increase in CSPG. Cholera toxin and dBcAMP also dramatically stimulated hyaluronan synthesis by possible phosphorylation induced activation of hyaluronan synthase(s).  相似文献   

7.
The dose response effect of a new adenosine analogue, GR 79236 (N-[1S trans-2-hydroxycyclopentyl] adenosine) upon insulin sensitivity was examined in human adipocytes. The influence of adenosine upon insulin sensitivity for suppression of lipolysis and stimulation of glucose transport was examined. Removal of adenosine by use of adenosine deaminase stimulated lipolysis to the same extent as did 10–9 M noradrenaline. GR79236 brought about dose dependent inhibition of lipolysis with half-maximal effect at 11.3±7.8×10–9 M. When lipolysis was stimulated by noradrenaline alone the subsequent inhibition of lipolysis brought about by GR79236 was significantly greater than that of insulin. To examine adenosine effects on the insulin signalling pathway separately from those on lipolysis, the insulin sensitivity of glucose transport was examined. Removal of adenosine brought about a small but significant increase in the concentration of insulin required for half-maximal stimulation of glucose transport. Adenosine agonists offer promise as new agents for the modulation of metabolism in diabetes and other states of insulin resistance.  相似文献   

8.
The effect of cAMP on insulin binding and insulin stimulation of glucose transport was investigated in isolated rat adipocytes. Preincubation for 30 min in medium containing 16 mmol/l glucose and either db-cAMP or bromo-cAMP in concentrations of 10(-4)-10(-3) M inhibited high affinity binding of insulin by 15 to 30% and glucose transport by 30 to 50%. Preincubation with IBMX (10(-4)-10(-3) M) reduced insulin binding by 25% and glucose transport by 70%. Closer analysis of these data indicated that preincubation with these compounds caused not only a decrease in insulin binding but also a post-receptor resistance. High intracellular cyclic AMP-levels seem therefore to induce insulin resistance at both receptor and post-receptor levels.  相似文献   

9.
A partially purified extract of adenosine diphosphate glucose pyrophosphorylase has been prepared from Solanum tuberosum. The effect of temperature on the initial rate of reaction has been determined in the presence and absence of activator. The results are discussed in relation to the sweetening of potatoes at 2°.  相似文献   

10.
The effect of intravenous infusion of islet amyloid polypeptide (IAPP/amylin) and calcitonin gene-related peptide (CGRP) on blood glucose and plasma insulin in the basal and glucose-stimulated state was investigated in the anaesthetized rat. Both peptides had no effect on basal blood glucose or plasma insulin but following an intravenous bolus of glucose, CGRP-treated rats were hyperglycaemic and hyperinsulinaemic compared with control animals which were similar to IAPP-treated rats. IAPP had no effect on glucose-stimulated islet insulin secretion. These results suggest that CGRP, but not IAPP, alters glucose removalin vivo.  相似文献   

11.
12.
The role of regucalcin, which is a regulatory protein in intracellular signaling pathway, in the regulation of glucose utilization and lipid production was investigated using the cloned rat hepatoma H4-II-E cells overexpressing regucalcin. The hepatoma cells (wild-type) and stable regucalcin/pCXN2-transfected cells (transfectant) were cultured for 72 h in a medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers. Cells with subconfluency were cultured for 24 or 72 h in medium containing either vehicle or insulin (10(-8) or 10(-7) M) with or without supplementation of glucose (10, 25, or 50 mg/ml of medium) in the absence of insulin. The production of triglyceride and free fatty acid was significantly increased in transfectants cultured without insulin and glucose supplementation as compared with that of wild-type cells. The supplementation of glucose (10, 25, or 50 mg/ml) caused a remarkable increase in medium glucose consumption, triglyceride, and free fatty acid productions in transfectants cultured without insulin. The presence of insulin (10(-7) M) caused a significant increase in medium glucose consumption, triglyceride, and free fatty acid productions in wild-type cells cultured with glucose supplementation. These increases were significantly prevented in transfectants cultured for 72 h. The expression of acetyl-CoA carboxylase, HMG-CoA reductase, glucokinase, pyruvate kinase, and glyceroaldehyde-3-phosphate dehydrogenase (G3PDH) mRNAs in wild-type cells was not significantly changed by culture with or without glucose supplementation in the presence of insulin. These gene expressions were not significantly changed in transfectants. The expression of glucose transporter 2 mRNA was significantly increased in transfectants as compared with that of wild-type cells. Such an increase was not seen in transfectants cultured in the presence of insulin with or without glucose supplementation. This study demonstrates that overexpression of regucalcin enhances glucose utilization and lipid production in the cloned rat hepatoma H4-II-E cells, and that it regulates the effect of insulin.  相似文献   

13.
A simple method to determine the in vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5-6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 μg/L to 1.0 μg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, the in vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.  相似文献   

14.
It is well known that Michaelis–Menten kinetics is suitable for the response function in chemical reaction, when the reaction rate does not increase indefinitely when an excess of resource is available. However, the existing models for insulin therapies assume that the response function of insulin clearance is proportional to the insulin concentration. In this paper, we propose a new model for insulin therapy for both type 1 and type 2 diabetes mellitus, in which the insulin degradation rate assumes Michaelis–Menten kinetics. Our analysis shows that it is possible to mimic pancreatic insulin secretion by exogenous insulin infusions, and our numerical simulations provide clinical strategies for insulin–administration practices.  相似文献   

15.
In the present study, we investigated the mechanism by which the antidiabetic drug phenformin increases insulin binding to its receptors in IM-9 human cultured lymphocytes. After a 24-hr preincubation, phenformin induced a twofold increase in specific 125I-insulin binding, and removal of phenformin was followed 6 hr later by a return in binding to control levels. This effect of phenformin on insulin binding was not a consequence of either inhibition of cell growth, changes in cellular cyclic adenosine monophosphate (AMP) levels, or changes in guanosine triphosphate (GTP) content. Since phenformin is known to inhibit various aspects of cellular energy metabolism, the relationship between 125I-insulin binding and energy metabolism in IM-9 cells was investigated. The phenformin-induced increase in insulin binding to IM-9 cells was related to a time- and dose-dependent decrease in ATP levels. Other agents that lowered ATP levels, including antimycin, dinitrophenol, and 2-deoxyglucose, also raised insulin binding. These studies indicated, therefore, that phenformin enhances insulin binding to receptors on IM-9 cells and that this effect on insulin receptors may be related to alterations in metabolic functions that are reflected by a lowering of ATP levels.  相似文献   

16.
Adenosine plays a role in promoting sleep, an effect that is thought to be mediated in the basal forebrain. Adenosine levels vary in this region with prolonged wakefulness in a unique way. The basis for this is unknown. We examined, in rats, the activity of the major metabolic enzymes for adenosine - adenosine deaminase, adenosine kinase, ecto- and cytosolic 5'-nucleotidase - in sleep/wake regulatory regions as well as cerebral cortex, and how the activity varies across the day and with sleep deprivation. There were robust spatial differences for the activity of adenosine deaminase, adenosine kinase, and cytosolic and ecto-5'-nucleotidase. However, the basal forebrain was not different from other sleep/wake regulatory regions apart from the tuberomammillary nucleus. All adenosine metabolic enzymes exhibited diurnal variations in their activity, albeit not in all brain regions. Activity of adenosine deaminase increased during the active period in the ventrolateral pre-optic area but decreased significantly in the basal forebrain. Enzymatic activity of adenosine kinase and cytosolic-5'-nucleotidase was higher during the active period in all brain regions tested. However, the activity of ecto-5'-nucleotidase was augmented during the active period only in the cerebral cortex. This diurnal variation may play a role in the regulation of adenosine in relationship to sleep and wakefulness across the day. In contrast, we found no changes specifically with sleep deprivation in the activity of any enzyme in any brain region. Thus, changes in adenosine with sleep deprivation are not a consequence of alterations in adenosine enzyme activity.  相似文献   

17.
目的:利用体外培养的乳鼠心肌细胞,观测高浓度胰岛素和高浓度葡萄糖作用下对去甲肾上腺素诱导的心肌细胞肥大的影响,并探讨其可能作用机制.方法:以培养的乳鼠心肌细胞为模型分组给药后,用显微镜目镜计数心肌细胞搏动的频率;用Lowrys法测心肌细胞的蛋白质含量;用消化分离法,利用计算机图象分析系统测心肌细胞的体积;用[3H]leucine标记法测定心肌细胞蛋白的合成.结果:与对照组相比,去甲肾上腺素(NE)组、高糖组、高胰岛素组心肌细胞蛋白含量、体积、蛋白合成均有明显增加,而与高糖加NE组和高糖高胰岛素组相比较,高糖高胰岛素加NE组心肌细胞蛋白含量、体积、蛋白合成增加则更为显著.结论:单纯高浓度胰岛素培养可促进心肌细胞肥大,同时用高糖高胰岛素联合培养,可使去甲肾上腺素诱导的心肌细胞肥大作用进一步增强.  相似文献   

18.
The effects of zinc supplementation (20 mM ZnCl2 from the drinking water for eight weeks) on plasma glucose and insulin levels, as well as its in vitro effect on lipogenesis and lipolysis in adipocytes were studied in genetically obese (ob/ob) mice and their lean controls (+/?). Zinc supplementation reduced the fasting plasma glucose levels in both obese and lean mice by 21 and 25%, respectively (p < 0.05). Fasting plasma insulin levels were significantly decreased by 42% in obese mice after zinc treatment. In obese mice, zinc supplementation also attenuated the glycemic response by 34% after the glucose load. The insulin-like effect of zinc on lipogenesis in adipocytes was significantly increased by 80% in lean mice. However, the increment of 74% on lipogenesis in obese mice was observed only when the zinc plus insulin treatment was given. This study reveals that zinc supplementation alleviated the hyperglycemia of ob/ob mice, which may be related to its effect on the enhancement of insulin activity.  相似文献   

19.
20.
Glucose transporter 4 (GLUT4) is comprehensively investigated in mammals, while the comparative research of GLUT4 in common carp is deficient. To investigate the function of GLUT4, carp glut4 was first isolated. The open reading frame of carp glut4 was 1518 bp in length, encoding 505 amino acids. A high-sequence homology was identified in carp and teleost, and the phylogenetic tree displayed that the carp GLUT4 was clustered with the teleost. A high level of glut4 mRNA was analysed in fat, red muscle and white muscle. After fasting treatment, glut4 mRNA expression was increased significantly in muscle. In the oral glucose tolerance test experiment, glut4 mRNA was also significantly elevated in muscle, gut and fat. Furthermore, intraperitoneal injection of insulin resulted in the upregulation of glut4 gene expression significantly in white muscle, gut and fat. On the contrary, the glut4 mRNA level in the white muscle, gut and fat was markedly downregulated after glucagon injection. These results suggest that GLUT4 might play important roles in food intake and could be regulated by nutrient condition, insulin and glucagon in common carp. Our study is the first to report on GLUT4 in common carp. These data provide a basis for further study on fish GLUT4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号