首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic peptides Phd1-3 spanning the cationic carboxy-terminal region of human beta-defensins HBD-1-3 have been shown to have antibacterial activity. Gross morphological changes were seen in E. coli cells treated with these peptides. In this paper, we have studied the surface-active properties of peptides Phd1-3 and their interactions with different phospholipids using Langmuir-Blodgett monolayers. Compression isotherms and increase in pressure on insertion of peptides into lipid monolayers at different initial pressures indicate the affinity of these peptides for negatively charged lipids. Phd3 inserted less effectively into monolayers as compared to Phd1 and Phd2. The peptides differed in their ability to permeabilize the inner membrane of E. coli, with Phd3 being least effective. It is likely that the peptides kill Gram-negative bacteria by more than one mechanism. When hydrophobicity and net charge favor insertion into lipid membranes, then membrane permeabilization could be the primary event in the killing of bacteria. In cases where membrane insertion does not occur, interaction with phospholipid interface induces highly selective stress that leads to stasis and cell death, as proposed for polymyxin B and bactenecin.  相似文献   

2.
Human macrophage inflammatory protein-3alpha (MIP-3alpha; CCL20) is a CC-type chemokine that binds to and activates CC chemokine receptor-6 (CCR6). Although MIP-3alpha does not share the binding site of CCR6 with any other chemokine, human beta-defensin-1 and -2, small cationic antimicrobial peptides, have also been found to bind to and activate CCR6. Conversely, we have found that MIP-3alpha possesses antibacterial activity of greater potency than human beta-defensin-1 and -2 against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, while having no activity against the fungus Candida albicans. There is no clear sequence similarity between beta-defensins and the chemokine MIP-3alpha, beyond an abundance of cationic residues and the presence of disulfide bonds. Nonetheless, there are structural similarities between these three proteins that allow their overlap of chemotactic and antimicrobial activities. In this report, we describe the x-ray crystal structure of human MIP-3alpha refined to a resolution of 1.7 A and compare it with the crystal structures of human beta-defensin-1 and -2. Molecules of MIP-3alpha and the beta-defensins seem to share few structural motifs that are likely associated with their common biological activities.  相似文献   

3.
Varkey J  Singh S  Nagaraj R 《Peptides》2006,27(11):2614-2623
The antibacterial activity of peptides without disulfide bridges, spanning the carboxy-terminal segment of arthropod defensins, has been investigated. Although all the peptides have net positive charges, they exhibited varying antibacterial potencies and spectra. Atomic force and fluorescence microscopic analyses indicate that the peptides exert their activity by permeabilizing the outer and inner membranes of Gram-negative bacteria such as Escherichia coli. It appears that the plasticity observed in the activity of mammalian defensins with respect to sequence, number of disulfide bridges or net positive charge, is also observed in insect defensins.  相似文献   

4.
Mammalian defensins (alpha as well as beta forms) have a beta-hairpin structural motif spanning approximately 20 residues at the carboxy-terminal end. We have investigated the antibacterial activity and biophysical properties of synthetic peptides corresponding to the carboxy-terminal segment of bovine beta-defensin-2 (BNBD-2): VRNHVTC(1)RINRGFC(2)VPIRC(3)PGRTRQIGTC(4)FGPRIKC(5)C(6)RSW (positions of disulfide bonds are C(1)[bond]C(5), C(2)[bond]C(4), and C(3)[bond]C(6)). The parent sequence chosen was RCPGRTRQIGTIFGPRIKCRSW (P1), which spans the carboxy-terminal region of BNBD-2. Since the dipeptide sequence D-Pro-Gly favors nucleation of beta-hairpin structures even in acyclic peptides, analogues of P1 with one D-Pro-Gly at the central portion and two D-Pro-Gly segments near the N- and C-terminal ends were generated. An analogue in which GP (residues 14 and 15) in P1 was switched to PG was also synthesized. It was observed that the cyclic form as well as their linear forms exhibited antibacterial activity. Circular dichroism and theoretical studies indicated that while the beta-hairpin conformation is populated, there is conformational plasticity in the cyclic and linear peptides. The mode of bacterial killing was by membrane permeabilization. The entire mammalian defensin sequence does not appear to be essential for manifestation of antibacterial activity. Hence, short peptides corresponding to the C-terminal segments of mammalian defensins could have potential as therapeutic agents.  相似文献   

5.
Human α-defensin 5 (HD5, HD5(ox) to specify the oxidized and disulfide linked form) is a 32-residue cysteine-rich host-defense peptide, expressed and released by small intestinal Paneth cells, that exhibits antibacterial activity against a number of Gram-negative and -positive bacterial strains. To ascertain the contributions of its disulfide array to structure, antimicrobial activity, and proteolytic stability, a series of HD5 double mutant peptides where pairs of cysteine residues corresponding to native disulfide linkages (Cys(3)-Cys(31), Cys(5)-Cys(20), Cys(10)-Cys(30)) were mutated to Ser or Ala residues, overexpressed in E. coli, purified, and characterized. A hexa mutant peptide, HD5[Ser(hexa)], where all six native Cys residues are replaced by Ser residues, was also evaluated. Removal of a single native S-S linkage influences oxidative folding and regioisomerization, antibacterial activity, Gram-negative bacterial membrane permeabilization, and proteolytic stability. Whereas the majority of the HD5 mutant peptides show low micromolar activity against Gram-negative E. coli ATCC 25922 in colony counting assays, the wild-type disulfide array is essential for low micromolar activity against Gram-positive S. aureus ATCC 25923. Removal of a single disulfide bond attenuates the activity observed for HD5(ox) against this Gram-positive bacterial strain. This observation supports the notion that the HD5(ox) mechanism of antibacterial action differs for Gram-negative and Gram-positive species [Wei et al. (2009) J. Biol. Chem. 284, 29180-29192] and that the native disulfide array is a requirement for its activity against S. aureus.  相似文献   

6.
Members of the proline-rich antibacterial peptide family, pyrrhocoricin, apidaecin and drosocin appear to kill responsive bacterial species by binding to the multihelical lid region of the bacterial DnaK protein. Pyrrhocoricin, the most potent among these peptides, is nontoxic to healthy mice, and can protect these animals from bacterial challenge. A structure-antibacterial activity study of pyrrhocoricin against Escherichia coli and Agrobacterium tumefaciens identified the N-terminal half, residues 2-10, the region responsible for inhibition of the ATPase activity, as the fragment that contains the active segment. While fluorescein-labeled versions of the native peptides entered E. coli cells, deletion of the C-terminal half of pyrrhocoricin significantly reduced the peptide's ability to enter bacterial or mammalian cells. These findings highlighted pyrrhocoricin's suitability for combating intracellular pathogens and raised the possibility that the proline-rich antibacterial peptides can deliver drug leads into mammalian cells. By observing strong relationships between the binding to a synthetic fragment of the target protein and antibacterial activities of pyrrhocoricin analogs modified at strategic positions, we further verified that DnaK was the bacterial target macromolecule. Inaddition, the antimicrobial activity spectrum of native pyrrhocoricin against 11 bacterial and fungal strains and the binding of labeled pyrrhocoricin to synthetic DnaK D-E helix fragments of the appropriate species could be correlated. Mutational analysis on a synthetic E. coli DnaK fragment identified a possible binding surface for pyrrhocoricin.  相似文献   

7.
Hepcidin was first identified as an antimicrobial peptide present in human serum and urine. It was later demonstrated that hepcidin is the long sought hormone that regulates iron homeostasis in mammals. The native peptide of 25 amino acids (Hepc25) contains four disulfide bridges that maintain a β-hairpin motif. The aim of the present study was to assess whether the intramolecular disulfide bridges are necessary for Hepc25 antimicrobial activity. We show that a synthetic peptide corresponding to human Hepc25, and which contains the four disulfide bridges, has an antibacterial activity against several strains of Gram-positive and Gram-negative bacteria. On the contrary, a synthetic peptide where all cysteines were replaced by alanines (Hepc25-Ala) had no detectable activity against the same strains of bacteria. In a further step, the mode of action of Hepc25 on Escherichia coli was studied. SYTOX Green uptake was used to assess bacterial membrane integrity. No permeabilization of the membrane was observed with Hepc25, indicating that this peptide does not kill bacteria by destroying their membranes. Gel retardation assay showed that the Hepc25 binds to DNA with high efficiency, and that this binding ability is dependent on the presence of the intramolecular disulfide bridges. Reduction of Hepc25 or replacement of the eight cysteines by alanine residues led to peptides that were no longer able to bind DNA in the in vitro assay. Altogether, these results demonstrate that Hepc25 should adopt a three-dimensional structure stabilized by the intramolecular disulfide bridges in order to have antibacterial activity.  相似文献   

8.
Antimicrobial peptides (AMP) are effector molecules of the innate immune system. A cross-functionality exists between AMPs and heparin-binding peptides. Here, we show that the peptides QPTRRPRPGTGPGRRPRPRPRP (QPT22), derived from proline arginine-rich end leucine-rich repeat protein (PRELP) and KRFKQDGGWSHWSPWSS (KRF17) from thrombospondin exert antimicrobial activities against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, as well as against the Gram-positive Bacillus subtilis. Analysis by fluorescence microscopy demonstrated that QPT22 and KRF17 bind to bacterial membranes. Particularly QPT22 was found to induce membrane leakage of liposomes. The peptides displayed no hemolytic activities, nor did they exert membrane permeabilising effects on human epithelial cells. Additional peptides derived from heparin-binding regions of laminin, vitronectin, and fibronectin exerted similar antibacterial effects. Several peptides also showed activity against Staphylococcus aureus. Thus, the data disclose a novel antimicrobial activity of heparin-binding regions of matrix glycoproteins. The findings can be utilized in the development of novel AMPs for therapeutic use.  相似文献   

9.
Structure and biological activities of synthetic peptides corresponding to bovine neutrophil beta-defensin BNBD-12, GPLSC(1)GRNGGVC(2)IPIRC(3) PVPMRQIGTC(4) FGRPVKC(5) C(6)RSW with disulfide connectivities C(1)-C(5), C(2)-C(4) and C(3)-C(6) and its variants with one, two and three disulfide bridges have been investigated. Selective protection of cysteine thiols was necessary in the four and six cysteine containing peptides for the formation of disulfide connectivities as observed in BNBD-12. Circular dichroism (CD) spectra indicate that in aqueous medium, only a small fraction of molecules populate turn-like conformations. In the presence of micelles and lipid vesicles, the single, two and three disulfide containing peptides adopt beta-hairpin or beta-sheet structures. Antibacterial activity was observed for all the peptides, irrespective of the number of disulfide bridges or how they were connected. Our results suggest that a rigid beta-sheet structure or the presence of three disulfide bridges does not appear to be stringent requirements for antibacterial activity in beta-defensins.  相似文献   

10.
Novel antimicrobial peptide of human epididymal duct origin   总被引:7,自引:0,他引:7  
  相似文献   

11.
Mechanisms of action of ostrich beta-defensins against Escherichia coli   总被引:1,自引:0,他引:1  
To understand their mechanism of antimicrobial activity against Gram-negative bacteria, ostrich beta-defensins, ostricacins-1 and 2 (Osp-1 and Osp-2), were compared with those of sheep myeloid antimicrobial peptide (SMAP)-29 and human neutrophil peptide (HNP)-1, well-characterized sheep alpha-helical and human alpha-defensin peptides, respectively. Fluorescence-based biochemical assays demonstrated that the ostricacins bound lipopolysaccharides and disrupted both outer and cytoplasmic membrane integrity. The ostricacins' permeabilizing ability was weaker than that of SMAP-29, but stronger than HNP-1. As ostricacins have previously shown the ability to inhibit bacterial growth, these peptides were suggested to be bacteriostatic to Gram-negative bacteria, which are caused by the interaction between the peptides and cytoplasmic targets causing the inhibition of DNA, RNA, and protein synthesis as well as enzymatic activities. These findings indicated promising possibilities for the peptides to be used in the development of therapeutic and topical products.  相似文献   

12.
Bovine lactoferricin is a 25-residue antibacterial peptide isolated after gastric cleavage of the iron transporting protein lactoferrin. A 15-residue fragment, FKCRRWQWRMKKLGA of this peptide sustains most of the antibacterial activity. In this truncated sequence, the two Trp residues are found to be essential for antibacterial activity. The anchoring properties of Trp, as have been observed in membrane proteins, are believed to be important for the interaction of Trp containing antibacterial peptides with bacterial cell membranes. We have investigated the molecular properties which make Trp important for the antibacterial activity of the 15-residue peptide by replacing Trp with natural and unnatural aromatic amino acids. This series of peptides was tested for antibacterial activity against Echerichia coli and Staphylococcus aureus. We found that neither the hydrogen bonding ability nor the amphipathicity of the indole system are essential properties for the effect of Trp on the antibacterial activity of the peptides. Replacement of Trp with residues containing aromatic hydrocarbon side chains gave the most active peptides. We propose that aromatic hydrocarbon residues are able to position themselves deeper into the bacterial cell membrane, making the peptide more efficient in disrupting the bacterial cell membrane. From our results the size, shape and aromatic character of Trp seem to be the most important features for the activity of this class of Trp containing antibacterial peptides.  相似文献   

13.
Mammals have four peptidoglycan recognition proteins (PGRPs or PGLYRPs), which are secreted innate immunity pattern recognition molecules with effector functions. In this study, we demonstrate that human PGLYRP-1, PGLYRP-3, PGLYRP-4, and PGLYRP-3:4 have Zn(2+)-dependent bactericidal activity against both Gram-positive and Gram-negative bacteria at physiologic Zn(2+) concentrations found in serum, sweat, saliva, and other body fluids. The requirement for Zn(2+) can only be partially replaced by Ca(2+) for killing of Gram-positive bacteria but not for killing of Gram-negative bacteria. The bactericidal activity of PGLYRPs is salt insensitive and requires N-glycosylation of PGLYRPs. The LD(99) of PGLYRPs for Gram-positive and Gram-negative bacteria is 0.3-1.7 muM, and killing of bacteria by PGLYRPs, in contrast to killing by antibacterial peptides, does not involve permeabilization of cytoplasmic membrane. PGLYRPs and antibacterial peptides (phospholipase A(2), alpha- and beta-defensins, and bactericidal permeability-increasing protein), at subbactericidal concentrations, synergistically kill Gram-positive and Gram-negative bacteria. These results demonstrate that PGLYRPs are a novel class of recognition and effector molecules with broad Zn(2+)-dependent bactericidal activity against both Gram-positive and Gram-negative bacteria that are synergistic with antibacterial peptides.  相似文献   

14.
Effect of hydrogen peroxide on antibacterial activities of Canadian honeys   总被引:1,自引:0,他引:1  
Honey is recognized as an efficacious topical antimicrobial agent in the treatment of burns and wounds. The antimicrobial activity in some honeys depends on the endogenous hydrogen peroxide content. This study was aimed to determine whether honey's hydrogen peroxide level could serve as a honey-specific, activity-associated biomarker that would allow predicting and assessing the therapeutic effects of honey. Using a broth microdilution assay, I analyzed antibacterial activities of 42 Canadian honeys against two bacterial strains: Escherichia coli (ATCC 14948) and Bacillus subtilis (ATCC 6633). The MIC90 and MIC50 were established from the dose-response relationship between antibacterial activities and honey concentrations. The impact of H2O2 on antibacterial activity was determined (i) by measuring the levels of H2O2 before and after its removal by catalase and (ii) by correlating the results with levels of antibacterial activities. Canadian honeys demonstrated moderate to high antibacterial activity against both bacterial species. Both MIC90 and MIC50 revealed that the honeys exhibited a selective growth inhibitory activity against E. coli, and this activity was strongly influenced by endogenous H2O2 concentrations. Bacillus subtilis activity was marginally significantly correlated with H2O2 content. The removal of H2O2 by catalase reduced the honeys' antibacterial activity, but the enzyme was unable to completely decompose endogenous H2O2. The 25%-30% H2O2 "leftover" was significantly correlated with the honeys' residual antibacterial activity against E. coli. These data indicate that all Canadian honeys exhibited antibacterial activity, with higher selectivity against E. coli than B. subtilis, and that these antibacterial activities were correlated with hydrogen peroxide production in honeys. Hydrogen peroxide levels in honey, therefore, is a strong predictor of the honey's antibacterial activity.  相似文献   

15.
We have isolated and characterized omwaprin, a 50-amino-acid cationic protein from the venom of inland taipan (Oxyuranus microlepidotus). It is a new member of the waprin family of snake venom proteins. A synthetic gene was designed and constructed for expressing the recombinant protein in Escherichia coli. Recombinant omwaprin was used for carrying out functional analyses. The protein is non-toxic to Swiss albino mice at doses of up to 10 mg/kg when administered intraperitoneally. However, it shows selective and dose-dependant antibacterial activity against Gram-positive bacteria. The minimum inhibitory doses were in the range 2-10 microg for selected species of bacteria in radial diffusion assays. The antibacterial activity is salt-tolerant up to 350 mM NaCl. However, omwaprin lost its antibacterial activity upon reduction and alkylation of its cysteine residues, or upon deletion of six N-terminal amino acid residues, four of which are positively charged. These observations indicate that the three-dimensional structure constrained by four disulfide bonds and the N-terminal residues are essential for its activity. The mechanism of action is via membrane disruption, as shown by scanning electron microscopy. Importantly, omwaprin lacks haemolytic activity on human erythrocytes. This demonstrates the specificity of omwaprin for bacterial membranes. Unlike other reported WAP (whey acidic protein) domain-containing antibacterial proteins, including elafin, EPPIN (epididymal proteinase inhibitor), SWAM1 and SWAM2 [single WAP (whey acidic protein) motif proteins 1 and 2] and SLPI (secretory leucocyte proteinase inhibitor), omwaprin shows species-specific activity on the Gram-positive bacteria tested.  相似文献   

16.
Antimicrobial peptides are important effector molecules of the innate immune system. Here, we describe that peptides derived from the heparin‐binding disulfide‐constrained loop region of human ß‐amyloid precursor protein are antimicrobial. The peptides investigated were linear and cyclic forms of NWCKRGRKQCKTHPH (NWC15) as well as the cyclic form comprising the C‐terminal hydrophobic amino acid extension FVIPY (NWCKRGRKQCKTHPHFVIPY; NWC20c). Compared with the benchmark antimicrobial peptide LL‐37, these peptides efficiently killed the Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram‐positive Staphylococcus aureus and Bacillus subtilis, and the fungi Candida albicans and Candida parapsilosis. Correspondingly, fluorescence and electron microscopy demonstrated that the peptides caused defects in bacterial membranes. Analogously, the peptides permeabilised negatively charged liposomes. Despite their bactericidal effect, the peptides displayed very limited hemolytic activities within the concentration range investigated and exerted very small membrane permeabilising effects on human epithelial cells. The efficiency of the peptides with respect to bacterial killing and liposome membrane leakage was in the order NWC20c > NWC15c > NWC15l, which also correlated to the adsorption density for these peptides at the model lipid membrane. Thus, whereas the cationic sequence is a minimum determinant for antimicrobial action, a constrained loop‐structure as well as a hydrophobic extension further contributes to membrane permeabilising activity of this region of amyloid precursor protein. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
To determine the antibacterial activity of defensins and other antimicrobial peptides in biopsy extracts, we evaluated a flow cytometric method with the membrane potential sensitive dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)]. This assay enables us to discriminate intact non-fluorescent and depolarized fluorescent bacteria after exposure to antimicrobial peptides by measurement at the direct target, the cytoplasmic membrane and the membrane potential. The feasibility of the flow cytometric assay was evaluated with recombinant human beta-defensin 3 (HBD-3) against 25 bacterial strains representing 12 species. HBD-3 showed a broad-spectrum dose dependent activity and the minimal dose to cause depolarization ranged from 1.25 to >15 microg/ml HBD-3, depending on the species tested. The antibacterial effect was diminished with sodium chloride or dithiothreitol and could be abrogated with a HBD-3 antibody. Additionally, isolated cationic extracts from human intestinal biopsies showed a strong bactericidal effect against Escherichia coli K12, E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923, which was diminished towards E. coli at 150 mM NaCl, whereas the activity towards S. aureus ATCC 25923 remained unaffected at physiological salt concentrations. DTT blocked the bactericidal effect of biopsy extracts completely.  相似文献   

18.
Eppin has two potential protease inhibitory domains: a whey acid protein or four disulfide core domain and a Kunitz domain. The protein is also reported to have antibacterial activity against Gram-negative bacteria. Eppin and its whey acid protein and Kunitz domains were expressed in Escherichia coli and their ability to inhibit proteases and kill bacteria compared. The Kunitz domain inhibits elastase (EC 3.4.21.37) to a similar extent as intact eppin, whereas the whey acid protein domain has no such activity. None of these fragments inhibits trypsin (EC 3.4.21.4) or chymotrypsin (EC 3.4.21.1) at the concentrations tested. In a colony forming unit assay, both domains have some antibacterial activity against E. coli, but this was not to the same degree as intact eppin or the two domains together. When bacterial respiratory electron transport was measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, eppin and its domains caused an increase in the rate of respiration. This suggests that the mechanism of cell killing may be partly through the permeablization of the bacterial inner membrane, resulting in uncoupling of respiratory electron transport and consequent collapse of the proton motive force. Thus, we conclude that although both of eppin's domains are involved in the protein's antibacterial activity, only the Kunitz domain is required for selective protease inhibition.  相似文献   

19.
Huang J  Hao D  Chen Y  Xu Y  Tan J  Huang Y  Li F  Chen Y 《Peptides》2011,32(7):1488-1495
Enantiomeric amphipathic α-helical antibacterial peptides were synthesized and their biophysical and biological properties under different physiological conditions were studied. In the absence of physiological factors, the l- and d-peptides exhibited similar antimicrobial activities against a broad spectrum of bacteria, even against clinical isolates with resistance to traditional antibiotics. However, in the presence of NaCl, CaCl2 or human serum albumin (HSA) at physiological concentrations, the enantiomers revealed bacterium-species dependent attenuations in antibacterial activity. In the presence of salts the electrostatic interaction between the peptides and the biomembrane was inhibited. Salts, especially CaCl2, weakened the ability of the peptides to permeabilize the outer membrane of Gram-negative bacteria, as determined by a 1-N-phenylnaphthylamine uptake assay. HSA exhibited variable inhibitory effects on the activity of the peptides when incubated with different bacterial strains. The peptides showed different binding association abilities to HSA at different molar ratios, regardless of their chirality, resulting in reduced peptide biological activity. The d-peptide performed better than its l-enantiomer in all conditions tested because of its resistance to proteolysis, and may therefore represent a promising candidate for development as a therapeutic agent.  相似文献   

20.
Human beta-defensins form a group of cysteine-rich antimicrobial peptides which have been found in epithelial tissue and, more recently, in the male genital tract. They play a role in the defense against microbial pathogens in innate immunity and display additional chemotactic functions in the adaptive immune system. An important characteristic of antimicrobial peptides is that they also exhibit toxic potential on eukaryotic cells. Very little is known about the structure dependence of antimicrobial and cytotoxic effects. We investigated human beta-defensin 3 (hBD-3), a potent broad-spectrum antimicrobial effector peptide, regarding the influence of structural parameters on the antimicrobial and cytotoxic activity. We have established a structure-activity relation of the hBD-3 using synthetic derivatives differing in length, charge, disulfide connectivity, and overall hydrophobicity. The antimicrobial activity of the peptides was compared to the cyctotoxic effects on monocytic THP-1 cells and the hemolytic activity on human erythrocytes. We found that it is not important for antimicrobial and cytotoxic activity whether and how cysteine residues are arranged to form disulfide bonds. Substitution of half-cystinyl residues by tryptophan resulted in increased activities, while other substitutions did not change activity. Correlation of activities with the structural changes demonstrates that the activity on eukaryotic cells appears to depend strongly on the overall hydrophobicity. In contrast, the antimicrobial potency of hBD-3 peptides is determined by the distribution of positively charged amino acid residues and hydrophobic side chains. The results facilitate the understanding of beta-defensin interaction with different cell types and guide the design of antimicrobially active peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号