首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
He B  Xi F  Zhang X  Zhang J  Guo W 《The EMBO journal》2007,26(18):4053-4065
The exocyst is an octameric protein complex implicated in the tethering of post-Golgi secretory vesicles to the plasma membrane before fusion. The function of individual exocyst components and the mechanism by which this tethering complex is targeted to sites of secretion are not clear. In this study, we report that the exocyst subunit Exo70 functions in concert with Sec3 to anchor the exocyst to the plasma membrane. We found that the C-terminal Domain D of Exo70 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues on Exo70 that are critical for its interaction with phospholipids and the small GTPase Rho3. Further genetic and cell biological analyses suggest that the interaction of Exo70 with phospholipids, but not Rho3, is essential for the membrane association of the exocyst complex. We propose that Exo70 mediates the assembly of the exocyst complex at the plasma membrane, which is a crucial step in the tethering of post-Golgi secretory vesicles for exocytosis.  相似文献   

2.
The exocyst is a eukaryotic tethering complex necessary for the fusion of exocytic vesicles with the plasma membrane. Its function in vivo is tightly regulated by interactions with multiple small GTPases. Exo70, one of the eight subunits of the exocyst, is important for the localization of the exocyst to the plasma membrane. It interacts with TC10 and Rho3 GTPases in mammals and yeast, respectively, and has been shown recently to bind to the actin-polymerization complex Arp2/3. Here, we present the crystal structure of Mus musculus Exo70 at 2.25 A resolution. Exo70 is composed of alpha-helices in a series of right-handed helix-turn-helix motifs organized into a long rod of length 170 A and width 35 A. Although the alpha-helical organization of this molecule is similar to that in Saccharomyces cerevisiae Exo70, major structural differences are observed on the surface of the molecule, at the domain boundaries, and in various loop structures. In particular, the C-terminal domain of M. musculus Exo70 adopts a new orientation relative to the N-terminal half not seen in S. cerevisiae Exo70 structures. Given the low level of sequence conservation within Exo70, this structure provides new insights into our understanding of many species-specific functions of the exocyst.  相似文献   

3.
The exocyst consists of eight rod-shaped subunits that align in a side-by-side manner to tether secretory vesicles to the plasma membrane in preparation for fusion. Two subunits, Sec3p and Exo70p, localize to exocytic sites by an actin-independent pathway, whereas the other six ride on vesicles along actin cables. Here, we demonstrate that three of the four domains of Exo70p are essential for growth. The remaining domain, domain C, is not essential but when deleted, it leads to synthetic lethality with many secretory mutations, defects in exocyst assembly of exocyst components Sec5p and Sec6p, and loss of actin-independent localization. This is analogous to a deletion of the amino-terminal domain of Sec3p, which prevents an interaction with Cdc42p or Rho1p and blocks its actin-independent localization. The two mutations are synthetically lethal, even in the presence of high copy number suppressors that can bypass complete deletions of either single gene. Although domain C binds Rho3p, loss of the Exo70p-Rho3p interaction does not account for the synthetic lethal interactions or the exocyst assembly defects. The results suggest that either Exo70p or Sec3p must associate with the plasma membrane for the exocyst to function as a vesicle tether.  相似文献   

4.
The exocyst is a conserved protein complex essential for trafficking secretory vesicles to the plasma membrane. The structure of the C-terminal domain of the exocyst subunit Sec6p reveals multiple helical bundles, which are structurally and topologically similar to Exo70p and the C-terminal domains of Exo84p and Sec15, despite <10% sequence identity. The helical bundles appear to be evolutionarily related molecular scaffolds that have diverged to create functionally distinct exocyst proteins.  相似文献   

5.
Exocytosis in the budding yeast Saccharomyces cerevisiae occurs at discrete domains of the plasma membrane. The protein complex that tethers incoming vesicles to sites of secretion is known as the exocyst. We have used photobleaching recovery experiments to characterize the dynamic behavior of the eight subunits that make up the exocyst. One subset (Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, and Exo84p) exhibits mobility similar to that of the vesicle-bound Rab family protein Sec4p, whereas Sec3p and Exo70p exhibit substantially more stability. Disruption of actin assembly abolishes the ability of the first subset of subunits to recover after photobleaching, whereas Sec3p and Exo70p are resistant. Immunogold electron microscopy and epifluorescence video microscopy indicate that all exocyst subunits, except for Sec3p, are associated with secretory vesicles as they arrive at exocytic sites. Assembly of the exocyst occurs when the first subset of subunits, delivered on vesicles, joins Sec3p and Exo70p on the plasma membrane. Exocyst assembly serves to both target and tether vesicles to sites of exocytosis.  相似文献   

6.
The exocyst is an evolutionarily conserved octameric protein complex that tethers post-Golgi secretory vesicles at the plasma membrane for exocytosis. To elucidate the mechanism of vesicle tethering, it is important to understand how the exocyst physically associates with the plasma membrane (PM). In this study, we report that the mammalian exocyst subunit Exo70 associates with the PM through its direct interaction with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). Furthermore, we have identified key conserved residues at the C-terminus of Exo70 that are crucial for the interaction of Exo70 with PI(4,5)P(2). Disrupting Exo70-PI(4,5)P(2) interaction abolished the membrane association of Exo70. We have also found that wild-type Exo70 but not the PI(4,5)P(2)-binding-deficient Exo70 mutant is capable of recruiting other exocyst components to the PM. Using the ts045 vesicular stomatitis virus glycoprotein trafficking assay, we demonstrate that Exo70-PI(4,5)P(2) interaction is critical for the docking and fusion of post-Golgi secretory vesicles, but not for their transport to the PM.  相似文献   

7.
The exocytosis is a process of fusion of secretory vesicles with plasma membrane, which plays a prominent role in many crucial cellular processes, e.g. secretion of neurotransmitters, cytokinesis or yeast budding. Prior to the SNARE-mediated fusion, the initial contact of secretory vesicle with the target membrane is mediated by an evolutionary conserved vesicle tethering protein complex, the exocyst. In all eukaryotic cells, the exocyst is composed of eight subunits — Sec5, Sec6, Sec8, Sec10, Sec15, Exo84 and two membrane-targeting landmark subunits Sec3 and Exo70, which have been described to directly interact with phosphatidylinositol (4,5)-bisphosphate (PIP2) of the plasma membrane. In this work, we utilized coarse-grained molecular dynamics simulations to elucidate structural details of the interaction of yeast Sec3p and Exo70p with lipid bilayers containing PIP2. We found that PIP2 is coordinated by the positively charged pocket of N-terminal part of Sec3p, which folds into unique Pleckstrin homology domain. Conversely, Exo70p interacts with the lipid bilayer by several binding sites distributed along the structure of this exocyst subunit. Moreover, we observed that the interaction of Exo70p with the membrane causes clustering of PIP2 in the adjacent leaflet. We further revealed that PIP2 is required for the correct positioning of small GTPase Rho1p, a direct Sec3p interactor, prior to the formation of the functional Rho1p-exocyst-membrane assembly. Our results show the critical importance of the plasma membrane pool of PIP2 for the exocyst function and suggest that specific interaction with acidic phospholipids represents an ancestral mechanism for the exocyst regulation.  相似文献   

8.
The exocyst serves to tether secretory vesicles to cortical sites specified by polarity determinants, in preparation for fusion with the plasma membrane. Although most exocyst components are brought to these sites by riding on secretory vesicles as they are actively transported along actin cables, Exo70p displays actin-independent localization to these sites, implying an interaction with a polarity determinant. Here we show that Exo70p directly and specifically binds to the polarity determinant scaffold protein Bem1p. The interaction involves multiple domains of both Exo70p and Bem1p. Mutations in Exo70p that disrupt its interaction with Bem1, without impairing its interactions with other known binding partners, lead to the loss of actin-independent localization. Synthetic genetic interactions confirm the importance of the Exo70p–Bem1p interaction, although there is some possible redundancy with Sec3p and Sec15p, other exocyst components that also interact with polarity determinants. Similar to Sec3p, the actin-independent localization of Exo70p requires a synergistic interaction with the phosphoinositide PI(4,5)P2.  相似文献   

9.
The exocyst complex plays an essential role in tethering secretory vesicles to specific domains of the plasma membrane for exocytosis. However, how the exocyst complex is assembled and targeted to sites of secretion is unclear. Here, we have investigated the role of the exocyst component Exo84p in these processes. We have generated an array of temperature-sensitive yeast exo84 mutants. Electron microscopy and cargo protein traffic analyses of these mutants indicated that Exo84p is specifically involved in the post-Golgi stage of secretion. Using various yeast mutants, we systematically studied the localization of Exo84p and other exocyst proteins by fluorescence microscopy. We found that pre-Golgi traffic and polarized actin organization are required for Exo84p localization. However, none of the exocyst proteins controls Exo84p polarization. In addition, Sec3p is not responsible for the polarization of Exo84p or any other exocyst component to the daughter cell. On the other hand, several exocyst members, including Sec10p, Sec15p, and Exo70p, clearly require Exo84p for their polarization. Biochemical analyses of the exocyst composition indicated that the assembly of Sec10p, Sec15p, and Exo70p with the rest of the complex requires Exo84p. We propose that there are at least two distinct regulatory mechanisms for exocyst polarization, one for Sec3p and one for the other members, including Exo84p. Exo84p plays a critical role in both the assembly of the exocyst and its targeting to sites of secretion.  相似文献   

10.
The exocyst is a multisubunit complex that has been implicated in the transport of vesicles from the Golgi complex to the plasma membrane, possibly acting as a vesicle tether and contributing to the specificity of membrane fusion. Here we characterize a novel interaction between the Exo70 subunit of the exocyst and Snapin, a ubiquitous protein known to associate with at least two t-SNAREs, SNAP23 and SNAP25. The interaction between Exo70 and Snapin is mediated via an N-terminal coil-coil domain in Exo70 and a C-terminal helical region in Snapin. Exo70 competes with SNAP23 for Snapin binding, suggesting that Snapin does not provide a direct link between the exocyst and the SNARE complex but, rather, mediates cross-talk between the two complexes by sequential interactions. The insulin-regulated trafficking of GLUT4 to the plasma membrane serves to facilitate glucose uptake in adipocytes, and both SNAP23 and the exocyst have been implicated in this process. In this study, depletion of Snapin in adipocytes using RNA interference inhibits insulin-stimulated glucose uptake. Thus, Snapin interacts with the exocyst and plays a modulatory role in GLUT4 vesicle trafficking.  相似文献   

11.
Ren J  Guo W 《Developmental cell》2012,22(5):967-978
The exocyst is a multiprotein complex essential for exocytosis and plasma membrane remodeling. The assembly of the exocyst complex mediates the tethering of post-Golgi secretory vesicles to the plasma membrane prior to fusion. Elucidating the mechanisms regulating exocyst assembly is important for the understanding of exocytosis. Here we show that the exocyst component Exo70 is a direct substrate of the extracellular signal-regulated kinases 1/2 (ERK1/2). ERK1/2 phosphorylation enhances the binding of Exo70 to other exocyst components and promotes the assembly of the exocyst complex in response to epidermal growth factor (EGF) signaling. We further demonstrate that ERK1/2 regulates exocytosis, because blocking ERK1/2 signaling by a chemical inhibitor or the expression of an Exo70 mutant defective in ERK1/2 phosphorylation inhibited exocytosis. In tumor cells, blocking Exo70 phosphorylation inhibits matrix metalloproteinase secretion and invadopodia formation. ERK1/2 phosphorylation of Exo70 may thus coordinate exocytosis with other cellular events in response to growth factor signaling.  相似文献   

12.
In budding yeast, two classes of post-Golgi secretory vesicles carrying different sets of cargoes typified by Bgl2p and invertase are delivered to the plasma membrane for secretion. The exocyst is implicated in tethering these vesicles to the daughter cell membrane for exocytosis. In this study, we report that mutations in the exocyst component Exo70p predominantly block secretion of the Bgl2p vesicles. Furthermore, a defect in invertase vesicle trafficking caused by vps1Delta or pep12Delta in the exo70 mutant background is detrimental to the cell. The secretion defect in exo70 mutants was most pronounced during the early budding stage, which affected daughter cell growth. The selective secretion block does not occur at the vesicle formation or sorting stage because the exocytic vesicles are properly generated and protein processing is normal in the exo70 mutants. Our study suggests that Exo70p functions primarily at early stages of the cell cycle in Bgl2p vesicle secretion, which is critical for polarized cell growth.  相似文献   

13.
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2) and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.  相似文献   

14.
The exocyst is a multiprotein complex that plays an important role in secretory vesicle targeting and docking at the plasma membrane. Here we report the identification and characterization of a new component of the exocyst, Exo84p, in the yeast Saccharomyces cerevisiae. Yeast cells depleted of Exo84p cannot survive. These cells are defective in invertase secretion and accumulate vesicles similar to those in the late sec mutants. Exo84p co-immunoprecipitates with the exocyst components, and a portion of the Exo84p co-sediments with the exocyst complex in velocity gradients. The assembly of Exo84p into the exocyst complex requires two other subunits, Sec5p and Sec10p. Exo84p interacts with both Sec5p and Sec10p in a two-hybrid assay. Overexpression of Exo84p selectively suppresses the temperature sensitivity of a sec5 mutant. Exo84p specifically localizes to the bud tip or mother/daughter connection, sites of polarized secretion in the yeast S. cerevisiae. Exo84p is mislocalized in a sec5 mutant. These studies suggest that Exo84p is an essential protein that plays an important role in polarized secretion.  相似文献   

15.
The exocyst is a large complex that is required for tethering vesicles at the final stages of the exocytic pathway in all eukaryotes. Here we present the structures of the Exo70p subunit of this complex and of the C-terminal domains of Exo84p, at 2.0-A and 2.85-A resolution, respectively. Exo70p forms a 160-A-long rod with a novel fold composed of contiguous alpha-helical bundles. The Exo84p C terminus also forms a long rod (80 A), which unexpectedly has the same fold as the Exo70p N terminus. Our structural results and our experimental observations concerning the interaction between Exo70p and other exocyst subunits or Rho3p GTPase are consistent with an architecture wherein exocyst subunits are composed of mostly helical modules strung together into long rods.  相似文献   

16.
Zuo X  Zhang J  Zhang Y  Hsu SC  Zhou D  Guo W 《Nature cell biology》2006,8(12):1383-1388
The exocyst is a multiprotein complex essential for tethering secretory vesicles to specific domains of the plasma membrane for exocytosis. Here, we report that the exocyst component Exo70 interacts with the Arp2/3 complex, a key regulator of actin polymerization. We further show that the exocyst-Arp2/3 interaction is regulated by epidermal growth factor (EGF) signalling. Inhibition of Exo70 by RNA interference (RNAi) or antibody microinjection blocks the formation of actin-based membrane protrusions and affects various aspects of cell motility. We propose that Exo70, in addition to functioning in exocytosis, also regulates actin at the leading edges of migrating cells, therefore coordinating cytoskeleton and membrane traffic during cell migration.  相似文献   

17.
Lipid raft microdomains act as organizing centers for signal transduction. We report here that the exocyst complex, consisting of Exo70, Sec6, and Sec8, regulates the compartmentalization of Glut4-containing vesicles at lipid raft domains in adipocytes. Exo70 is recruited by the G protein TC10 after activation by insulin and brings with it Sec6 and Sec8. Knockdowns of these proteins block insulin-stimulated glucose uptake. Moreover, their targeting to lipid rafts is required for glucose uptake and Glut4 docking at the plasma membrane. The assembly of this complex also requires the PDZ domain protein SAP97, a member of the MAGUKs family, which binds to Sec8 upon its translocation to the lipid raft. Exocyst assembly at lipid rafts sets up targeting sites for Glut4 vesicles, which transiently associate with these microdomains upon stimulation of cells with insulin. These results suggest that the TC10/exocyst complex/SAP97 axis plays an important role in the tethering of Glut4 vesicles to the plasma membrane in adipocytes.  相似文献   

18.
Invadopodia are actin-rich membrane protrusions formed by tumor cells that degrade the extracellular matrix for invasion. Invadopodia formation involves membrane protrusions driven by Arp2/3-mediated actin polymerization and secretion of matrix metalloproteinases (MMPs) at the focal degrading sites. The exocyst mediates the tethering of post-Golgi secretory vesicles at the plasma membrane for exocytosis and has recently been implicated in regulating actin dynamics during cell migration. Here, we report that the exocyst plays a pivotal role in invadopodial activity. With RNAi knockdown of the exocyst component Exo70 or Sec8, MDA-MB-231 cells expressing constitutively active c-Src failed to form invadopodia. On the other hand, overexpression of Exo70 promoted invadopodia formation. Disrupting the exocyst function by siEXO70 or siSEC8 treatment or by expression of a dominant negative fragment of Exo70 inhibited the secretion of MMPs. We have also found that the exocyst interacts with the Arp2/3 complex in cells with high invasion potential; blocking the exocyst-Arp2/3 interaction inhibited Arp2/3-mediated actin polymerization and invadopodia formation. Together, our results suggest that the exocyst plays important roles in cell invasion by mediating the secretion of MMPs at focal degrading sites and regulating Arp2/3-mediated actin dynamics.  相似文献   

19.
Insulin stimulates glucose transport in adipocytes and muscle by inducing the redistribution of Glut4 from intracellular locations to the plasma membrane. The fusion of Glut4-containing vesicles at the plasma membrane is known to involve the target SNAREs syntaxin 4 and SNAP-23 and the vesicle SNARE VAMP2. Little is known about the initial docking of Glut4 vesicles with the plasma membrane. A recent report has implicated Exo70, a component of the mammalian exocyst complex, in the initial interaction of Glut4 vesicles with the adipocyte plasma membrane. Here, we have examined the role of two other exocyst components, rsec6 and rsec8. We show that insulin promotes a redistribution of rsec6 and rsec8 to the plasma membrane and to cytoskeletal fractions within 3T3-L1 adipocytes but does not modulate levels of these proteins co-localized with Glut4. We further show that adenoviral-mediated overexpression of either rsec6 or rsec8 increases the magnitude of insulin-stimulated glucose transport in 3T3-L1 adipocytes. By contrast, overexpression of rsec6 or rsec8 did not increase the extent of the secretion of adipsin or ACRP30 from adipocytes and had no discernible effect on transferrin receptor traffic. Collectively, our data support a role for the exocyst in insulin-stimulated glucose transport and suggest a model by which insulin-dependent relocation of the exocyst to the plasma membrane may contribute to the specificity of Glut4 vesicle docking and fusion with the adipocyte plasma membrane.  相似文献   

20.
E-Cadherin-mediated formation of adherens junctions (AJs) is essential for the morphogenesis of epithelial cells. However, the mechanisms underlying E-cadherin clustering and AJ maturation are not fully understood. Here we report that type Iγ phosphatidylinositol-4-phosphate 5-kinase (PIPKIγ) associates with the exocyst via a direct interaction with Exo70, the exocyst subunit that guides the polarized targeting of exocyst to the plasma membrane. By means of this interaction, PIPKIγ mediates the association between E-cadherin and Exo70 and determines the targeting of Exo70 to AJs. Further investigation revealed that Exo70 is necessary for clustering of E-cadherin on the plasma membrane and extension of nascent E-cadherin adhesions, which are critical for the maturation of cohesive AJs. In addition, we observed phosphatidylinositol-4,5-bisphosphate (PI4,5P(2)) accumulation at E-cadherin clusters during the assembly of E-cadherin adhesions. PIPKIγ-generated PI4,5P(2) is required for recruiting Exo70 to newly formed E-cadherin junctions and facilitates the assembly and maturation of AJs. These results support a model in which PIPKIγ and PIPKIγ-generated PI4,5P(2) pools at nascent E-cadherin contacts cue Exo70 targeting and orient the tethering of exocyst-associated E-cadherin. This could be an important mechanism that regulates E-cadherin clustering and AJ maturation, which is essential for the establishment of solid, polarized epithelial structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号