首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eubacteria, the biosynthesis of queuine, a modified base found in the wobble position (#34) of tRNAs coding for Tyr, His, Asp, and Asn, occurs via a multistep pathway. One of the key enzymes in this pathway, tRNA-guanine transglycosylase (TGT), exchanges the genetically encoded guanine at position 34 with a queuine precursor, preQ1. Previous studies have identified a minimal positive RNA recognition motif for Escherichia coli TGT consisting of a stable minihelix that contains a U-G-U sequence starting at the second position of its seven base anticodon loop. Recently, we reported that TGT was capable of recognizing the U-G-U sequence outside of this limited structural context. To further characterize the ability of TGT to recognize the U-G-U sequence in alternate contexts, we constructed mutants of the previously characterized E. coli tRNA(Tyr) minihelix. The U-G-U sequence was shifted to various positions within the anticodon loop of these mutants. Characterization of these analogs demonstrates that in addition to the normal U33G34U35 position, TGT can also recognize the U34G35U36 analog (UGU(+1)). The other analogs were not active. This indicates that the recognition of the U-G-U sequence is not strictly dependent upon its position relative to the stem. In E. coli, the full-length tRNA with a U34G35U36 anticodon sequence is one of the isoacceptors that codes for threonine. We found that TGT is able to recognize tRNA(Thr(UGU)) but only in the absence of a uridine at position 33. U33, an invariant base present in all tRNAs, has been shown to strongly influence the conformation of the anticodon loop of certain tRNAs. We find that mutation of this base confers on TGT the ability to recognize U34G35U36, and suggests that loop conformation affects recognition. The fact that the other analogs were not active indicates that although TGT is capable of recognizing the U-G-U sequence in additional contexts, this recognition is not indiscriminate.  相似文献   

2.
Soderberg T  Poulter CD 《Biochemistry》2000,39(21):6546-6553
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes the alkylation of the exocyclic amine of A37 by a dimethylallyl unit in tRNAs with an adenosine in the third anticodon position (position 36). By use of purified recombinant enzyme, steady- state kinetic studies were conducted with chemically synthesized RNA oligoribonucleotides to determine the essential elements within the tRNA anticodon stem-loop structure required for recognition by the enzyme. A 17-base oligoribonucleotide corresponding to the anticodon stem-loop of E. coli tRNA(Phe) formed a stem-loop minihelix (minihelix(Phe)) when annealed rapidly on ice, while the same molecule formed a duplex structure with a central loop when annealed slowly at higher concentrations. Both the minihelix and duplex structures gave k(cat)s similar to that for the normal substrate (full-length tRNA(Phe) unmodified at A37), although the K(m) for minihelix(Phe) was approximately 180-fold higher than full-length tRNA. The A36-A37-A38 motif, which is completely conserved in tRNAs modified by the enzyme, was found to be important for modification. Changing A36 to G in the minihelix resulted in a 260-fold reduction in k(cat) compared to minihelix(Phe) and a 13-fold increase in K(m). An A38G variant was modified with a 9-fold reduction in k(cat) and a 5-fold increase in K(m). A random coil 17-base oligoribonucleotide in which the loop sequence of E. coli tRNA(Phe) was preserved, but the 5 base pair helix stem was completely disrupted and showed no measurable activity, indicating that a helix-loop structure is essential for recognition. Finally, altering the identity of several base pairs in the helical stem did not have a major effect on catalytic efficiency, suggesting that the enzyme does not make base-specific contacts important for binding or catalysis in this region.  相似文献   

3.
4.
5.
6.
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.  相似文献   

7.
All eukaryotic tRNA(His) molecules are unique among tRNA species because they require addition of a guanine nucleotide at the -1 position by tRNA(His) guanylyltransferase, encoded in yeast by THG1. This G(-1) residue is both necessary and sufficient for aminoacylation of tRNA by histidyl-tRNA synthetase in vitro and is required for aminoacylation in vivo. Although Thg1 is presumed to be highly specific for tRNA(His) to prevent misacylation of tRNAs, the source of this specificity is unknown. We show here that Thg1 is >10,000-fold more selective for its cognate substrate tRNA(His) than for the noncognate substrate tRNA(Phe). We also demonstrate that the GUG anticodon of tRNA(His) is a crucial Thg1 identity element, since alteration of this anticodon in tRNA(His) completely abrogates Thg1 activity, and the simple introduction of this GUG anticodon to any of three noncognate tRNAs results in significant Thg1 activity. For tRNA(Phe), k(cat)/K(M) is improved by at least 200-fold. Thg1 is the only protein other than aminoacyl-tRNA synthetases that is known to use the anticodon as an identity element to discriminate among tRNA species while acting at a remote site on the tRNA, an unexpected link given the lack of any identifiable sequence similarity between these two families of proteins. Moreover, Thg1 and tRNA synthetases share two other features: They act in close proximity to one another at the top of the tRNA aminoacyl-acceptor stem, and the chemistry of their respective reactions is strikingly similar.  相似文献   

8.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).  相似文献   

9.
10.
Two methionine tRNAs from yeast mitochondria have been purified. The mitochondrial initiator tRNA has been identified by formylation using a mitochondrial enzyme extract. E. coli transformylase however, does not formylate the yeast mitochondrial initiator tRNA. The sequence was determined using both 32P-in vivo labeled and 32P-end labeled mt tRNAf(Met). This tRNA, unlike N. crassa mitochondrial tRNAf(Met), has two structural features typical of procaryotic initiator tRNAs: (i) it lacks a Watson-Crick base-pair at the end of the acceptor stem and (ii) has a T-psi-C-A sequence in loop IV. However, both yeast and N. crassa mitochondrial initiator tRNAs have a U11:A24 base-pair in the D-stem unlike procaryotic initiator tRNAs which have A11:U24. Interestingly, both mitochondrial initiator tRNAs, as well as bean chloroplast tRNAf(Met), have only two G:C pairs next to the anticodon loop, unlike any other initiator tRNA whatever its origin. In terms of overall sequence homology, yeast mitochondrial tRNA(Met)f differs from both procaryotic or eucaryotic initiator tRNAs, showing the highest homology with N. crassa mitochondrial initiator tRNA.  相似文献   

11.
12.
Yeast tRNA(Ser) is a member of the class II tRNAs, whose characteristic is the presence of an extended variable loop. This additional structural feature raises questions about the recognition of these class II tRNAs by their cognate synthetase and the possibility of the involvement of the extra arm in the recognition process. A footprinting study of yeast tRNA(Ser) complexed with its cognate synthetase, yeast seryl-tRNA synthetase (an alpha 2 dimer), was undertaken. Chemical (ethylnitrosourea) and enzymatic (nucleases S1 and V1) probes were used in the experiments. A map of the contact points between the tRNA and the synthetase was established and results were analyzed with respect to a three-dimensional model of yeast tRNA(Ser). Regions in close vicinity with the synthetase are clustered on one face of tRNA. The extra arm, which is strongly protected from chemical modifications, appears as an essential part of the contact area. The anticodon triplet and a large part of the anticodon arm are, in contrast, still accessible to the probes when the complex is formed. These results are discussed in the context of the recognition of tRNAs in the aminoacylation reaction.  相似文献   

13.
14.
tRNA (adenine-1) methyltransferase occurs in Bacillus subtilis. Eucaryotic tRNAThr and tRNATyr from yeast in which 1-methyladenosine (m1A) is already present in the TpsiC loop, can be methylated in vitro with S-adenosylmethionine and B. subtilis extracts. Each of the specific tRNAs accepts 1 mol of methyl groups per mol tRNA. The enzyme transforms into m1A the 3'-terminal adenylic acid residue of the dihydrouridine loop, a new position for a modified adenosine residue in tRNA. Both tRNAs have the sequence Py-A-A-G-G-C-m2(2)G in the D-loop and D-stem region. Other tRNAs with the same sequence in this region also serve as substrates for the tRNA (adenine-1) methyltransferase.  相似文献   

15.
We have investigated the specificity of the enzymes Q-insertase and mannosyl-Q transferase that replace the guanosine at position 34 (wobble base) in the anticodon of several tRNAs by Q or mannosyl-Q derivatives. We have restructured in vitro the normal anticodon of yeast tRNA-Asp-GUC, yeast tRNAArgICG and yeast tRNALeuUAG. With yeast tRNA-Asp-GUC, we have replaced one or several nucleotides in the vicinity of G34 by one of the four canonical nucleotides or by pseudouridylic acid; we have also constructed a tRNAAsp with eight bases instead of seven in the anticodon loop. With yeast tRNAArgICG and yeast tRNALeuUAG, we have replaced their anticodon by the trinucleotide GUC, coding for aspartic acid. The chimerical tRNAs were microinjected into the cytoplasm of Xenopus laevis oocytes and after 72 h the amount of Q34 and mannosyl-Q34 incorporated was measured. Our results show that the U33G34U35 sequence, within an anticodon loop of seven bases in chimerical yeast tRNA-Asp-GUC, tRNAArgGUC or tRNALeuGUC, is the main determinant for Q-insertase activity at position 34; the rest of the tRNA sequence has only a slight influence. For mannosyl-Q transferase, however, a much broader structural feature of the tRNA than just the U33G34U35 sequence is important for the efficiency of Q34 transformation into mannosyl-Q34.  相似文献   

16.
Synthetic RNA stem loops corresponding to positions 28-42 in the anticodon region of tRNA(Phe) bind efficiently in an mRNA-dependent manner to ribosomes, whereas those made from DNA do not. In order to identify the positions where ribose is required, the anticodon stem-loop region of tRNA(Phe) (Escherichia coli) was synthesized chemically using a mixture of 2'-hydroxyl- and 2'-deoxynucleotide phosphoramidites. Oligonucleotides whose ribose composition allowed binding were retained selectively on nitrocellulose filters via binding to 30S ribosomal subunits. The binding-competent oligonucleotides were submitted to partial alkaline hydrolysis to identify the positions that were enriched for ribose. Quantification revealed a strong preference for a 2'-hydroxyl group at position U33. This was shown directly by the 50-fold lower binding affinity of a stem loop containing a single deoxyribose at position U33. Similarly, defective binding of the corresponding U33-2'-O-methyl-substituted stem-loop RNA suggests that absence of the 2'-hydroxyl group, rather than an altered sugar pucker, is responsible. Stem-loop oligoribonucleotides from different tRNAs with U33-deoxy substitutions showed similar, although quantitatively different effects, suggesting that intramolecular rather than tRNA-ribosome interactions are affected. Because the 2'-hydroxyl group of U33 was shown to be a major determinant of the U-turn of the anticodon loop in the crystal structure of tRNA(Phe) in yeast, our finding might indicate that the U-turn conformation in the anticodon loop is required and/or maintained when the tRNA is bound to the ribosomal P site.  相似文献   

17.
The phosphoramidites of 6-methyluridine and 5,6-dimethyluridine were synthesized and the modified uridines site-selectively incorporated into heptadecamers corresponding in sequence to the yeast tRNA(Phe) anticodon and TpsiC domains. The oligoribonucleotides were characterized by NMR, MALDI-TOF MS and UV-monitored thermal denaturations. The 6-methylated uridines retained the syn conformation at the polymer level and in each sequence location destabilized the RNAs compared to that of the unmodified RNA. The decrease in RNA duplex stability is predictable. However, loss of stability when the modified uridine is in a loop is sequence context dependent, and can not, at this time, be predicted from the location in the loop.  相似文献   

18.
Wower J  Zwieb CW  Hoffman DW  Wower IK 《Biochemistry》2002,41(28):8826-8836
Binding of the SmpB protein to tmRNA is essential for trans-translation, a process that facilitates peptide tagging of incompletely synthesized proteins. We have used three experimental approaches to study these interactions in vitro. Gel mobility shift assays demonstrated that tmRNA(Delta90-299), a truncated tmRNA derivative lacking pseudoknots 2-4, has the same affinity for the Escherichia coli and Aquifex aeolicus SmpB proteins as the intact E. coli tmRNA. These interactions can be challenged by double-stranded RNAs such as tRNAs and 5S rRNA and are abolished by removal of 24 amino acids from the C-terminus of the A. aeolicus protein. A combination of enzymatic probing and UV-induced cross-linking showed that three SmpB molecules can bind to a single tmRNA(Delta90-299) and tRNA molecule. Irradiation of E. coli tmRNA and yeast tRNA(Phe) bound to a single SmpB molecule with UV light induced cross-links to residues C343 and m(1)A48, respectively, in their T-loops and to their 3' terminal adenosines. These findings indicate that the acceptor-T arm constitutes the primary SmpB binding site in both tmRNA and tRNA. The remaining two SmpB molecules associate with the anticodon stem-like region of tmRNA and the anticodon arm of tRNAs. As the T and anticodon loops are dispensable for SmpB binding, it seems that SmpB recognizes double helical segments in both tmRNA and tRNA molecules. Although these interactions involve analogous elements in both molecules, their different effects on aminoacylation appear to reflect subtle structural differences between the tRNA-like domain of tmRNA and tRNA.  相似文献   

19.
G Ghosh  H Pelka  L H Schulman 《Biochemistry》1990,29(9):2220-2225
We have previously shown that the anticodon of methionine tRNAs contains most, if not all, of the nucleotides required for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768]. Previous cross-linking experiments have also identified a site in the synthetase that lies within 14 A of the anticodon binding domain [Leon, O., & Schulman, L. H. (1987) Biochemistry 26, 5416-5422]. In the present work, we have carried out site-directed mutagenesis of this domain, creating conservative amino acid changes at residues that contain side chains having potential hydrogen-bond donors or acceptors. Only one of these changes, converting Trp461----Phe, had a significant effect on aminoacylation. The mutant enzyme showed an approximately 60-100-fold increase in Km for methionine tRNAs, with little or no change in the Km for methionine or ATP or in the maximal velocity of the aminoacylation reaction. Conversion of the adjacent Pro460 to Leu resulted in a smaller increase in Km for tRNA(Mets), with no change in the other kinetic parameters. Examination of the interaction of the mutant enzymes with a series of tRNA(Met) derivatives containing base substitutions in the anticodon revealed sequence-specific interactions between the Phe461 mutant and different anticodons. Km values were highest for tRNA(mMet) derivatives containing the normal anticodon wobble base C. Base substitutions at this site decreased the Km for aminoacylation by the Phe461 mutant, while increasing the Km for the wild-type enzyme and for the Leu460 mutant to values greater than 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The expression of the gene for threonyl-tRNA synthetase (thrS) is negatively autoregulated at the translational level in Escherichia coli. The synthetase binds to a region of the thrS leader mRNA upstream from the ribosomal binding site inhibiting subsequent translation. The leader mRNA consists of four structural domains. The present work shows that mutations in these four domains affect expression and/or regulation in different ways. Domain 1, the 3' end of the leader, contains the ribosomal binding site, which appears not to be essential for synthetase binding. Mutations in this domain probably affect regulation by changing the competition between the ribosome and the synthetase for binding to the leader. Domain 2, 3' from the ribosomal binding site, is a stem and loop with structural similarities to the tRNA(Thr) anticodon arm. In tRNAs the anticodon loop is seven nucleotides long, mutations that increase or decrease the length of the anticodon-like loop of domain 2 from seven nucleotides abolish control. The nucleotides in the second and third positions of the anticodon-like sequence are essential for recognition and the nucleotide in the wobble position is not, again like tRNA(Thr). The effect of mutations in domain 3 indicate that it acts as an articulation between domains 2 and 4. Domain 4 is a stable arm that has similarities to the acceptor arm of tRNA(Thr) and is shown to be necessary for regulation. Based on this mutational analysis and previous footprinting experiments, it appears that domains 2 and 4, those analogous to tRNA(Thr), are involved in binding the synthetase which inhibits translation probably by interfering with ribosome loading at the nearby translation initiation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号