首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell sorting and chondrogenic aggregate formation in micromass culture   总被引:3,自引:0,他引:3  
A fundamental feature of cartilage differentiation in the developing limb is the formation of a prechondrogenic cell condensation. An apparently similar process of prechondrogenic cell aggregation occurs in micromass cultures of limb bud mesenchyme with the formation of cellular aggregates which often differentiate into cartilage nodules. We have investigated the process of aggregate formation in micromass culture using chimaeric mixtures of potentially chondrogenic and nonchondrogenic cell types. Two systems were studied: mixtures of distal and proximal limb mesenchyme cells and mixtures of distal limb cells with avian tendon fibroblasts. In both cases cultures of varying proportions of each cell type have been prepared. The results demonstrate that aggregate formation in vitro is the consequence of a cell sorting process which can involve prechondrogenic cells of widely different spatial origins within the developing limb. This contrasts with in vivo prechondrogenic condensation in which there is no evidence of cell sorting (Searls, R.L. (1967), J. Exp. Zool. 166, 39-50). However, our findings do indicate that cell surface differences occur in apparently undifferentiated limb mesenchyme. The results also suggest that mesenchymal cell aggregates must achieve a threshold size before chondrogenesis can proceed. In addition, the results show that under some culture conditions nonchondrogenic cells will form aggregates.  相似文献   

2.
Type II collagen is a major component of cartilage extracellular matrix. Differentiation of mesenchyme into cartilage involves the cessation of type I collagen synthesis and the onset of type II collagen synthesis. Solution hybridization of mRNA isolated from chick limb buds with a cDNA probe to type II collagen mRNA showed the presence of small amounts of type II collagen message in mesenchymal chick limbs. We have examined the localization of type II collagen mRNA in mesenchymal chick wing buds by in situ hybridization using single stranded RNA probes. Our results show a small but detectable amount of type II collagen RNA distributed uniformly in early limbs until the first precartilage condensations form at stage 22. This is interesting because it is known that mesenchyme isolated from chick wing buds has the capacity to undergo chondrogenesis in culture, even if taken from nonchondrogenic areas of the limb. At stage 23, type II collagen mRNA is found at significantly increased levels in the cells of the precartilage condensation when compared to the other limb cells. As chondrogenesis proceeds, the amount of type II collagen RNA increases even more in cells of the cartilage elements. The signal in the peripheral tissue is indistinguishable from background. These results show that type II collagen message exists at low levels in cells throughout the mesenchymal chick wing bud, until the formation of the condensation results in an elevation of type II mRNA in the prechondrogenic cells found in the core of the limb.  相似文献   

3.
In developing limb bud, mesenchymal cells form cellular aggregates called "mesenchymal condensations". These condensations show the prepattern of skeletal elements of the limb prior to cartilage differentiation. Roles of various signaling molecules in chondrogenesis in the limb bud have been reported. One group of signaling factors includes the Wnt proteins, which have been shown to have an inhibitory effect on chondrogenesis in the limb bud. Therefore, regulation of Wnt activity may be important in regulating cartilage differentiation. Here we show that Frzb-1, which encodes a secreted frizzled-related protein that can bind to Wnt proteins and can antagonize the activity of some Wnts, is expressed in the developing limb bud. At early stages of limb development, Frzb-1 is expressed in the ventral core mesenchyme of the limb bud, and later Frzb-1 expression becomes restricted to the central core region where mesenchymal condensations occur. At these stages, a chondrogenic marker gene, aggrecan, is not yet expressed. As limb development proceeds, expression of Frzb-1 is detected in cartilage primordial cells, although ultimately Frzb-1 expression is down-regulated. Similar results were obtained in the recombinant limb bud, which was constructed from dissociated and re-aggregated mesenchymal cells and an ectodermal jacket with the apical ectodermal ridge. In addition, Frzb-1 expression preceded aggrecan expression in micromass cultures. These results suggest that Frzb-1 has a role in condensation formation and cartilage differentiation by regulating Wnt activity in the limb bud.  相似文献   

4.
The glycosaminoglycan hyaluronate (HA) appears to play an important role in limb cartilage differentiation. The large amount of extracellular HA accumulated by prechondrogenic mesenchymal cells may prevent the cell-cell and/or cell-matrix interactions necessary to trigger chondrogenesis, and the removal of extracellular HA may be essential to initiate the crucial cellular condensation process that triggers cartilage differentiation. It has generally been assumed that HA turnover during chondrogenesis is controlled by the activity of the enzyme hyaluronidase (HAase). In the present study we have performed a temporal and spatial analysis of HAase activity during the progression of limb development and cartilage differentiation in vivo. We have separated embryonic chick wing buds at several stages of development into well-defined regions along the proximodistal axis in which cells are in different phases of differentiation, and we have examined HAase activity in each region. We have found that HAase activity is clearly detectable in undifferentiated wing buds at stage 18/19, which is shortly following the formation of a morphologically distinct limb bud rudiment, and remains relatively constant throughout subsequent stages of development through stage 27/28, at which time well-differentiated cartilage rudiments are present. Moreover, HAase activity in the prechondrogenic distal subridge regions of the limb at stages 22/23 and 25 is just as high as, or even slightly higher than, it is in proximal central core regions where condensation and cartilage differentiation are progressing. We have also found that limb bud HAase is active between pH 2.2 and 4.5 and is inactive above pH 5.0. This suggests that limb HAase is a lysosomal enzyme and that extracellular HA would have to be internalized to be degraded. These results indicate that the onset of chondrogenesis is not associated with the appearance or increase in activity of HAase. We suggest that possibility that HA turnover may be regulated by the binding and endocytosis of extracellular HA in preparation for its intracellular degradation by lysosomal HAase. Finally, we have found that the apical ectodermal ridge (AER)-containing distal limb bud ectoderm possesses a relatively high HAase activity. We suggest the possibility that a high HAase activity in the AER may ensure a rapid turnover and remodeling of the disorganized HA-rich basal lamina of the AER that might be essential for limb outgrowth.  相似文献   

5.
Here, we have studied how Sox genes and BMP signaling are functionally coupled during limb chondrogenesis. Using the experimental model of TGFbeta1-induced interdigital digits, we dissect the sequence of morphological and molecular events during in vivo chondrogenesis. Our results show that Sox8 and Sox9 are the most precocious markers of limb cartilage, and their induction is independent and precedes the activation of BMP signaling. Sox10 appears also to cooperate with Sox9 and Sox8 in the establishment of the digit cartilages. In addition, we show that experimental induction of Sox gene expression in the interdigital mesoderm is accompanied by loss of the apoptotic response to exogenous BMPs. L-Sox5 and Sox6 are respectively induced coincident and after the expression of Bmpr1b in the prechondrogenic aggregate, and their activation correlates with the induction of Type II Collagen and Aggrecan genes in the differentiating cartilages. The expression of Bmpr1b precedes the appearance of morphological changes in the prechondrogenic aggregate and establishes a landmark from which the maintenance of the expression of all Sox genes and the progress of cartilage differentiation becomes dependent on BMPs. Moreover, we show that Ventroptin precedes Noggin in the modulation of BMP activity in the developing cartilages. In summary, our findings suggest that Sox8, Sox9, and Sox10 have a cooperative function conferring chondrogenic competence to limb mesoderm in response to BMP signals. In turn, BMPs in concert with Sox9, Sox6, and L-Sox5 would be responsible for the execution and maintenance of the cartilage differentiation program.  相似文献   

6.
Comparative embryological data presented in the paper support an idea that chondrification of the mesenchyme does not begin until the latter becomes condensated. Size and density of the skeletogenous rudiments are not the same in different vertebrates. As a rule, in animals with much of the mesenchyme (chondrichthyans, amniotes), the prochondral condensations contain more cells and have both greater mass and density. The distribution pattern of the mesenchyme is also significant for the future development of the cartilaginous elements which at the earlier stages grow largely by the recruitment of surrounding mesenchymal cells. Such kind of the growth mode is probably most similar to the cartilage fusion mode: both processed take place in the absence of the perichondrium. The non-skeletal dense structures influence on the development of the cartilaginous skeleton primarily by determining distribution pattern of the mesenchyme, particularly the condensation of skeletogenous cells. THe growing cartilages themselves can influence mechanically on the surrounding organs.  相似文献   

7.
During metamorphosis of Xenopus laevis the extracellular matrix (ECM) proteins cytotactin and cytotactin-binding (CTB) proteoglycan and the cell adhesion molecules N-CAM and Ng-CAM, appear in highly restricted patterns determined by immunofluorescence histology. During limb development, cytotactin appears from the earliest stages in a meshwork of ECM fibrils associated with migrating mesenchymal cells forming the limb bud. Cytotactin also appears in the ECM between the apical limb ectoderm and mesenchyme. Later, both cytotactin and CTB proteoglycan appear co-localized within the central (prechondrogenic) limb mesenchyme. During chondrogenesis in these areas, cytotactin becomes restricted to perichondrium, while CTB proteoglycan is expressed throughout the cartilage matrix. The premyogenic mesenchyme surrounding the chondrogenic areas expressed N-CAM. Later, N-CAM is concentrated at the myogenic foci where cytotactin appears at sites of nerve/muscle contact and in tendons. Expression of these molecules in the blastemas of regenerating limbs was also studied, and during development of the central nervous system, stomach, and small intestine. Analysis of the expression patterns of cytotactin and CTB proteoglycan throughout development and metamorphosis reveals several consistent themes. The expression of these molecules is highly dynamic, often transient, and associated with key morphogenetic events. Cytotactin appears at multiple sites where cells undergo a transition from an undifferentiated, migratory phenotype to a differentiated phenotype. One or both molecules appear at several sites of border formation between disparate cell collectives, and CTB proteoglycan expression is associated with chondrogenesis.  相似文献   

8.
The formation of cartilage elements in the developing vertebrate limb, where they serve as primordia for the appendicular skeleton, is preceded by the appearance of discrete cellular condensations. Control of the size and spacing of these condensations is a key aspect of skeletal pattern formation. Limb bud cell cultures grown in the absence of ectoderm formed continuous sheet-like masses of cartilage. With the inclusion of ectoderm, these cultures produced one or more cartilage nodules surrounded by zones of noncartilaginous mesenchyme. Ectodermal fibroblast growth factors (FGF2 and FGF8), but not a mesodermal FGF (FGF7), substituted for ectoderm in inhibiting chondrogenic gene expression, with some combinations of the two ectodermal factors leading to well-spaced cartilage nodules of relatively uniform size. Treatment of cultures with SU5402, an inhibitor FGF receptor tyrosine kinase activity, rendered FGFs ineffective in inducing perinodular inhibition. Inhibition of production of FGF receptor 2 (FGFR2) by transfection of wing and leg cell cultures with antisense oligodeoxynucleotides blocked appearance of ectoderm- or FGF-induced zones of perinodular inhibition of chondrogenesis and, when introduced into the limb buds of developing embryos, led to shorter, thicker, and fused cartilage elements. Because FGFR2 is expressed mainly at sites of precartilage condensation during limb development in vivo and in vitro, these results suggest that activation of FGFR2 by FGFs during development elicits a lateral inhibitor of chondrogenesis that limits the expansion of developing skeletal elements.  相似文献   

9.
Cell Density and Cell Division in the Early Morphogenesis of the Chick Wing   总被引:5,自引:0,他引:5  
THE early development of the chick wing involves cell differentiation, pattern formation and growth1. In general terms, its morphogenesis can be seen in terms of how the growth of the mesenchyme and ectoderm is controlled, so that the very simple initial protrusion is transformed into an elongated paddle-like structure. At the same time a spatial pattern of differentiation must be specified within the mesenchyme, the cells forming cartilage and muscle so that the major skeletal and muscular features are laid down. In a previous paper2 we described the changing pattern of the distribution of mitoses in the mesenchyme. We found that there was an overall fall in mitotic index from early stages (18–19 Hamburger-Hamilton) but that this occurred more rapidly in the proximal regions after about stage 23 so that a graded proximo-distal increase in mitotic index became established. We also suggested that the overall form was determined by the ectoderm and not the mesenchyme. This raised specific problems about the control of growth of the mesenchyme: we could not account for the observed distribution of mitoses but wondered whether this involved a temporal programme or was related to positional information. Our investigations of the so-called mesenchymal condensations which are supposed to be the prelude to cartilage formation3 have led to detailed analysis of cell density during early morphogenesis. We show here that the cell density varies in a very regular manner and is closely correlated with mitotic index: mitotic index is inversely proportional to cell density. This finding is not only important in its own right because it may be the first demonstration of density dependent growth control4in vivo, but because it provides a new mechanism for the control of growth and pattern formation in limb morphogenesis.  相似文献   

10.
11.
Formation of the long bones requires a cartilage template. Cartilage formation (chondrogenesis) proceeds through determination of cells and their aggregation into prechondrogenic condensations, differentiation into chondrocytes, and later maturation. Several studies indicate that members of the bone morphogenetic protein (BMP) family promote cartilage formation, but the exact step(s) in which BMPs are involved during this process remains undefined. To resolve this issue, we have used a retroviral vector to misexpress the BMP antagonist Noggin in the embryonic chick limb. Unlike previous reports, we have characterized the resulting phenotype in depth, analyzing histological and early chondrogenic markers, as well as the patterns of cell death and proliferation. Misexpression of Noggin prior to the onset of chondrogenesis leads to the total absence of skeletal elements, as previously reported (J. Capdevila and R. L. Johnson, 1998, Dev. Biol. 197, 205-217). Noggin inhibits cartilage formation at two distinct steps. First, we demonstrate that mesenchymal cells do not aggregate into prechondrogenic condensations, and additional results suggest that these cells persist in an undifferentiated state. Second, we show that differentiation of chondroprogenitors into chondrocytes can also be blocked, concurrent with expanded expression of a presumptive joint region marker. In addition, we observed alterations in muscle and tendon morphogenesis, and the potential role of BMPs in these processes will be discussed. Our studies therefore provide in vivo evidence that BMPs are necessary for different steps of chondrogenesis: chondroprogenitor determination and/or condensation and subsequent differentiation into chondrocytes.  相似文献   

12.
13.
14.
Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis   总被引:6,自引:0,他引:6  
Bone morphogenetic protein 4 (BMP4) and growth/differentiation factor 5 (GDF5) are closely related protein family members and regulate early cartilage patterning and differentiation. In this study, we compared the functional outcome of their actions systematically at various stages of chondrogenesis in mouse embryonic limb bud mesenchyme grown in micromass cultures. Overall, both growth factors enhanced cartilage growth and differentiation in these cultures. Uniquely, BMP4 not only accelerated the formation and maturation of cartilaginous nodules, but also induced internodular mesenchymal cells to express cartilage differentiation markers. On the other hand, GDF5 increased the number of prechondrogenic mesenchymal cell condensation and cartilaginous nodules, without altering the overall pattern of differentiation. In addition, GDF5 caused a more sustained elevated expression level of Sox9 relative to that associated with BMP4. BMP4 accelerated chondrocyte maturation throughout the cultures and sustained an elevated level of Col10 expression, whereas GDF5 caused a transient increase in Col10 expression. Taken together, we conclude that BMP4 is instructive to chondrogenesis and induces mesenchymal cells toward the chondrogenic lineage. Furthermore, BMP4 accelerates the progression of cartilage differentiation to maturation. GDF5 enhances cartilage formation by promoting chondroprogenitor cell aggregation, and amplifying the responses of cartilage differentiation markers. These differences may serve to fine-tune the normal cartilage differentiation program, and can be exploited for the molecular manipulation in biomimetics.  相似文献   

15.
The fine structure of the embryo of Comanthus has been described by scanning and transmission electron microscopy at two-hourly intervals throughout the gastrula stage (from the fifth through the fifteenth hours of development). At 5 hr, gastrulation has occurred in the absence of any structure comparable to the echinoid hyaline layer; therefore, at least one important mechanism proposed for echinoid gastrulation cannot occur in this crinoid. At 7 hr, the blastocoelic basal lamina has formed, and all ectodermal and entodermal nuclei contain dense aggregates, which are probably perichromatin fibrils. At 9 hr, the blastocoel contains mesenchyme cells, presumably of entodermal origin. At 11 hr, ciliogenesis has started at the apical surfaces of the ectoderm cells and at the archenteral surfaces of the entoderm cells; many of the newly formed cilia are swollen subterminally. At 13 hr, a conspicuous glycocalyx is beginning to cover the apical ends of the ectoderm cells, and the fertilization membrane is beginning to dissolve from its inner surface. Between 5 and 13 hr, there is a gradual development of a junctional complex associating the apicolateral margins of the ectoderm cells ; the zonula adherens part of the complex appears at 5 hr and is well developed by 7 hr, and then the septate junction part of the complex appears at 9 hr and is well developed by 13 hr. At 15 hr, the blastopore has closed, the ectodermal glycocalyx is fully developed, some mesenchyme cells appear to be differentiating into skeleton forming cells, and the fertilization membrane is in the last stages of dissolution.  相似文献   

16.
We have previously shown that removal of the apical ectodermal ridge of the third interdigital space of the chick leg bud at stages 28 and 29 is followed by the appearance of ectopic cartilage, which in the course of development gives rise to extra digits. These in vivo studies suggest that the pattern of skeletal morphogenesis in the limb depends on the inhibitory effect of the ectoderm. In the present study we tested whether zone polarizing activity (ZPA) exerted an effect on the pattern of experimental chondrogenesis in the interdigital space of the leg bud in stage 29 HH chick embryos. A small fragment of tissue from the ZPA in chick embryos in which ZPA activity was most intense was grafted onto the interdigital space in which chondrogenesis had previously been experimentally induced. No significant changes were observed in the course of differentiation of the recipient interdigital spaces with ZPA grafts, leading us to conclude that the graft failed to modify the morphogenetic fate of interdigital tissue.  相似文献   

17.
In this study we examined the role of cell-cell affinity in patterning the avian frontonasal mass-the facial prominence that forms the prenasal cartilage and premaxillary bone. Reconstituted cell pellets derived from undifferentiated, frontonasal mass mesenchyme were recombined with facial epithelium and grafted to host embryos to continue development. We determined that the cells reestablished a recognizable frontonasal mass pattern and were able to induce egg teeth in overlying ectoderm. Further analysis revealed there were region-specific differences in the cartilage patterns such that central recombinations were more likely to form a straight cartilage rod, whereas lateral mesenchyme pellets were more likely to form complex, branched cartilage patterns. The basis for the pattern differences was that central mesenchyme cells showed preferential clustering in the cartilage condensations in the center of the graft, whereas lateral cells were spread throughout as determined by dye labeling and quail chicken chimeras. The disruption of cell contacts temporarily delayed onset of gene expression but by 48 h both Msx2 and Dlx5 were expressed. Msx2, in particular, had very clear edges to the expression domains and often the pattern of expression correlated with type of cartilage morphology. Together, these data suggest that an important patterning mechanism in the face is the ability of mesenchymal cells to sort out according to position and that Msx2 may help repress chondrogenic potential in the lateral frontonasal mass.  相似文献   

18.
The developing limb serves as a paradigm for studying pattern formation and morphogenetic cell death. Here, we show that conditional deletion of N-Myc (Mycn) in the developing mouse limb leads to uniformly small skeletal elements and profound soft-tissue syndactyly. The small skeletal elements are associated with decreased proliferation of limb bud mesenchyme and small cartilaginous condensations, and syndactyly is associated with a complete absence of interdigital cell death. Although Myc family proteins have pro-apoptotic activity, N-Myc is not expressed in interdigital cells undergoing programmed cell death. We provide evidence indicating that the lack of interdigital cell death and associated syndactyly is related to an absence of interdigital cells marked by expression of Fgfr2 and Msx2. Thus, instead of directly regulating interdigital cell death, we propose that N-Myc is required for the proper generation of undifferentiated mesenchymal cells that become localized to interdigital regions and trigger digit separation when eliminated by programmed cell death. Our results provide new insight into mechanisms that control limb development and suggest that defects in the formation of N-Myc-dependent interdigital tissue may be a root cause of common syndromic forms of syndactyly.  相似文献   

19.
20.
The development of the chick face involves outgrowth of buds of tissue, accompanied by the differentiation of cartilage and bone in spatially defined patterns. To investigate the role of epithelial-mesenchymal interactions in facial morphogenesis, small fragments of facial tissue have been grafted to host chick wing buds to continue their development in isolation. Fragments of the frontonasal mass give rise to typical upper-beak-like structures: a long central rod of cartilage, the prenasal cartilage and an egg tooth. Meckel's cartilage, characteristic of the lower beak, develops from fragments of the mandible. Removal of the ectoderm prior to grafting leads to truncated development. In fragments of frontonasal mass mesenchyme only a small spur of cartilage differentiates and there is no outgrowth. The mandible is less affected; a rod of cartilage still forms but the amount of outgrowth is reduced. Retinoid treatment of chick embryos specifically affects the development of the upper beak and outgrowth and cartilage differentiation in the frontonasal mass are inhibited. The mandibles, however, are unaffected and develop normally. In order to investigate whether the epithelium or the mesenchyme of the frontonasal mass is the target of retinoid action, recombinations of retinoid-treated and untreated facial tissue have been grafted to host wing buds. Recombinations of retinoid-treated frontonasal mass ectoderm with untreated mesenchyme develop normally whereas recombinations of untreated ectoderm with retinoid-treated mesenchyme lead to truncations. The amount of outgrowth in fragments of mandibular tissue is slightly reduced when either the ectoderm or the mesenchyme has been treated with retinoids. These recombination experiments demonstrate that the mesenchyme of the frontonasal mass is the target of retinoid action. This suggests that retinoids interfere with the reciprocal epithelial-mesenchymal interactions necessary for outgrowth and normal upper beak development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号