首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate provision has been found to regulate the capacity forChara corallina cells to take up nitrate. When nitrate was suppliedto N sufficient cells maximum nitrate uptake was reached after8 h. Prolonged treatment of the cells in the absence of N alsoresulted in the apparent ability of these cells to take up nitrate.Chlorate was found to substitute partially for nitrate in the‘induction’ step. The effects on nitrate reductionwere separated from those on nitrate uptake by experiments usingtungstate. Tungstate pretreatment had no effect on NO3uptake ‘induced’ by N starvation, but inhibitedNO3 uptake associated with NO3 pretreatment. Chloridepretreatment similarly had no effect on NO3 uptake ‘induced’by N deprivation, but inhibited NO3 uptake followingNO3 pretreatment. The data suggest that there are atleast two mechanisms responsible for the ‘induction’of nitrate uptake by Chara cells, one associated with NO3reduction and ‘induced’ by CIO3 or NO3and one associated with N deprivation. Key words: Nitrate, Chlorate, Chara corallina, Induction  相似文献   

2.
The relationship between chlorophyll a (Chl a) and primary productivity(PP) in the uppermost water layer and the water column-based(0–15 m) integral values of those variables were examinedusing measurements taken in Lake Kinneret (Israel) from 1990to 2003. In 81% of all Chl a profiles examined, the distributionwas fairly uniform within the entire 0–15 m water column,and 12.3% of instances showed a prominent subsurface maximum,when the lake phytoplankton was dominated by the dinoflagellatePeridinium gatunense. Chl a can be reliably estimated by remotesensing techniques in the productive and turbid water of LakeKinneret, since Chl a concentration at surface layers can beextrapolated to the entire water column. Light vertical attenuationcoefficient average for wavelengths from 400 to 700 nm, Kd,ranged from 0.203 to 1.954 m–1 and showed high degreeof temporal variation. The maximal rate of photosynthetic efficiency,PBopt [average 3.16 (±1.50)], ranged from 0.25 to 8.85mg C m–3 h–1 mg Chl a–1. Using measured dataof Chl a, PBopt, and light as an input, a simple depth-integratedPP model allowed plausible simulation of PP. However, a lackof correlation between photosynthetic activity and temperature(or other variable with remotely sensed potential) renders theuse of models that require input of photosynthetic efficiencyto calculate integrated PP of little value in the case of productiveand turbid Lake Kinneret.  相似文献   

3.
In situ growth and development of Neocalanus flemingeri/plumchrusstage C1–C4 copepodites were estimated by both the artificial-cohortand the single-stage incubation methods in March, April andMay of 2001–2005 at 5–6°C. Results from thesetwo methods were comparable and consistent. In the field, C1–C4stage durations ranged from 7 to >100 days, dependent ontemperature and chlorophyll a (Chl a) concentration. Averagestage durations were 12.4–14.1 days, yielding an averageof 56 days to reach C5, but under optimal conditions stage durationswere closer to 10 days, shortening the time to reach C5 (fromC1) to 46 days. Generally, growth rates decreased with increasingstage, ranging from 0.28 day–1 to close to zero but weretypically between 0.20 and 0.05 day–1, averaging 0.110± 0.006 day–1 (mean ± SE) for single-stageand 0.107 ± 0.005 day–1 (mean ± SE) forartificial-cohort methods. Growth was well described by equationsof Michaelis–Menten form, with maximum growth rates (Gmax)of 0.17–0.18 day–1 and half saturation Chl a concentrations(Kchl) of 0.45–0.46 mg m–3 for combined C1–3,while Gmax dropped to 0.08–0.09 day–1 but Kchl remainedat 0.38–0.93 mg m–3 for C4. In this study, in situgrowth of N. flemingeri/plumchrus was frequently food limitedto some degree, particularly during March. A comparison withglobal models of copepod growth rates suggests that these modelsstill require considerable refinement. We suggest that the artificial-cohortmethod is the most practical approach to generating the multispeciesdata required to address these deficiencies.  相似文献   

4.
We present a numerical model of nutrient uptake and photosynthesisduring migrations of the marine diatom Rhizosolenia that wasdeveloped to estimate fluxes of carbon and nitrogen due to thesemigrations in the open ocean. The predicted specific rate ofincrease of Rhizosolenia was 0.11–0.15 day1, whereas thetotal time for one migration cycle ranged between 3 and 5 days.Using published estimates of Rhizosolenia abundance, we estimatethat new primary production due to Rhizosolenia migrations rangesbetween 0.018 and 0.033 mmol N m–2 day–1. Thesevalues represent up to 17% of new production due to turbulentdiffusive fluxes of nitrate into the euphotic zone and are ofthe same order of magnitude as new production due to nitrogenfixation in tropical oceans. Large-scale contributions of Rhizosoleniato oceanic new production are limited by their relatively lowstanding crop. Variations in the formulation of losses withdepth greatly affected gross and net fluxes of carbon and nitrogen.Better characterization of losses of Rhizosolenia and improvedestimates of its abundance will help determine more accuratelythe contributions of Rhizosolenia to global biogeochemical cycles. 1Present address: Department of Agricultural and EnvironmentalScience, The Queen's University of Belfast New forge Lane, BelfastBT95PX, UK  相似文献   

5.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

6.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

7.
The causes of interspecific differences in the µ-l relationshipare examined in the context of a mechanistic model which relatesµ to irradiance in terms of six factors:, kc photosyntheticquotient (PQ), Chl a:C, respiration and excretion. The effectof cell size on the light saturated growth rate is also considered.It is shown that photosynthetic efficiency and PQ exhibit remarkablylittle interspecific variability, and average 0.024 ±0.005 µg C(µg Chl a)–1 h–1 (µEm–2 s–1)–1 and 1.5 ± 0.2 mol 02 molC–1 (when NO3 is the nitrogen source) respectively.Two useful relationships were derived: (i) between growth efficiency,g and Chl a:C at µ. = 0; (ii) between the compensationintensity, Ic and the Chl a-specific maintenance respirationrate. Both relationships were independent of temperature anddaylength. Species best adapted to growth at low light werefound to exhibit high Chl a:C ratios and low maintenance respirationrates. As a group, diatoms were consistently the best adaptedfor growth at low irradiance. Chiorophytes, haptophytes, chrysophytesand cryptophytes were intermediate in their performance at lowirradiance. Dinoflagellates exhibited extreme diversity, withspecies spanning the spectrum from very good performance atlow irradiance to very poor. A new µmax-cell carbon relationshipis given based on growth rates normalized to 15°C. Evidenceis presented to show that noise in this relationship can besignificantly reduced by using only carbon-specific growth ratesand using only data for species grown at the same daylength.  相似文献   

8.
The effects of a range of applied nitrate (NO3) concentrations(0–20 mol m3) on germination and emergence percentageof Triticum aestivum L. cv. Otane were examined at 30, 60, 90and 120 mm sowing depths. Germination percentage was not affectedby either sowing depth or applied NO3 concentration whereasemergence percentage decreased with increased sowing depth regardlessof applied NO3 concentration. Nitrate did not affectemergence percentage at 30 mm sowing depth, but at 60 to 120mm depth, emergence percentage decreased sharply with an increasedapplied NO3 concentration of 0 to 1·0 mol m–3then decreased only slightly with further increases in appliedNO3 of about 5·0 mol m–3. Root and shoot growth, NO3 accumulation and nitrate reductaseactivity (NRA) of plants supplied with 0, 1·0 and 1·0mol m–3 NO3 at a sowing depth of 60 mm were measuredprior to emergence. The coleoptile of all seedlings opened withinthe substrate. Prior to emergence from the substrate, shootextension growth was unaffected by additional NO3 butshoot fr. wt. and dry wt. were both greater at 1·0 and1·0 mol m–3 NO3 than with zero NO3.Root dry wt. was unaffected by NO3. Nitrate concentrationand NRA in root and shoot were always low without NO3.At 1·0 and 10 mol m3 NO3, NO3 accumulatedin the root and shoot to concentrations substantially greaterthan that applied and caused the induction of NRA. Regardlessof the applied NO3 concentration, seedlings which failedto emerge still had substantial seed reserves one month afterplanting. Coleoptile length was substantially less for seedlingswhich did not emerge than for seedlings which emerged, but wasnot affected by NO3. It is proposed that (a) decreasedemergence percentage with increased sowing depth was due tothe emergence of leaf I from the coleoptile within the substrateand (b) decreased emergence percentage with additional NO3was due to the increased expansion of leaf 1 within the substrateresulting in greater folding and damage of the leaf. Key words: Triticum aestivwn L., nitrate, sowing depth, seedling growth, seedling emergence  相似文献   

9.
A field experiment was conducted to study the effect of nitrogenapplication at 15, 30 and 45 kg ha–1 of urea at pre-flowering(PF) and pod initiation (PI) stages on the activity of nitrogenase(N2ase), nitrate reductase (NR) and other related parametersin the nodules of moong (Vigna radiata). Nitrogen applied atPF or PI stage was found to be inhibitory to N2ase and glutaminesynthetase (GS) activities except at 15 kg N ha–1 whenapplied at PF in the case of N2ase. At both the stages therewas increase in NR and glutamate dehydrogenase (GDH) activitieswith the application of nitrogen. Seed yield increased by 18per cent with the application of 15 kg N ha–1 at PI stagewhereas nitrogen application at PF stage only increased strawyield significantly. Nitrate reductase, nitrogenase, nitrogen application, ammonia assimilation, Vigna radiata  相似文献   

10.
Growth and nitrate uptake kinetics in vegetatively growing barley(Hordeum vulgare L., cvs Laevigatum, Golf, and Mette) were investigatedin solution culture under long-term limitations of externalnitrogen availability. Nitrate was fed to the cultures at relativeaddition rates (RA) ranging from 0.02 to 0.2 d–1. Therelative growth rate (RG, calculated for total plant dry weight)correlated well with RA in the range 0.02 to 0.07 d–1.In the RA range from 0.07 to 0.2 d–1 RG continued to increase,but an increasing fraction of nitrogen, added and absorbed,was apparently stored rather than used for structural growth.The RG of the roots was less affected by RA. Vmax, for net nitrateuptake increased with RA up to 0.11 d–1, but decreasedat higher RA. The decline in Vmax coincided with a build-upof nitrate stores in both roots and shoots. Vmax, expressedper unit nitrogen in the plants (the relative Vmax, was higherthan required for maintenance of growth (up to 30-fold) at lowRA, whereas at higher RA the relative Vmax decreased. Kineticpredictions of steady-state external nitrate concentrationsduring N-limited growth ranged from 0.2 to 5.0 mmol m–3over the RG range 0.02 to 0.11 d–1. It is suggested thatthe nitrate uptake system is not under specific regulation atlow RA, but co-ordinated with root protein synthesis and growthin general. At RA higher than 0.11 d–1, however, specificregulation of nitrate uptake, possibly via root nitrate pools,become important. The three cultivars showed very similar growthand nitrate uptake characteristics. Key words: Barley, growth, nitrogen limitation, nitrate uptake, kinetics  相似文献   

11.
Nitrate reductase activity (NRA, in vivo assay) and nitrate(NO-3) content of root and shoot and NO-3 and reduced nitrogencontent of xylem sap were measured in five temperate cerealssupplied with a range of NO-3 concentrations (0·1–20mol m–3) and three temperate pasture grasses suppliedwith 0·5 or 5 0 mol m–3 NO-3 For one cereal (Hordeumvulgare L ), in vitro NRA was also determined The effect ofexternal NO-3 concentration on the partitioning of NO-3 assimilationbetween root and shoot was assessed All measurements indicatedthat the root was the major site of NO3 assimilation in Avenasatwa L, Hordeum vulgare L, Secale cereale L, Tnticum aestivumL and x Triticosecale Wittm supplied with 0·1 to 1·0mol m–3 NO-3 and that for all cereals, shoot assimilationincreased in importance as applied NO-3 concentration increasedfrom 1.0 to 20 mol m–3 At 5.0–20 mol m–3 NO3,the data indicated that the shoot played an important if notmajor role in NO-3 assimilation in all cereals studied Measurementson Lolium multiflorum Lam and L perenne L indicated that theroot was the main site of NO-3 assimilation at 0.5 mol m–3NO-3 but shoot assimilation was predominant at 5.0 mol m–3NO-3 Both NRA distribution data and xylem sap analysis indicatedthat shoot assimilation was predominant in Dactylis glomerataL supplied with 0.5 or 5.0 mol m–3 NO-3 Avena sativa L., oats, Hordeum vulgare L., barley, Secale cereale L., rye, x Triticosecale Wittm., triticale, Triticum aestivum L., wheat, Dactylis glomerata L., cocksfoot, Lolium multiflorum Lam., Italian ryegrass, Lolium perenne L., perennial ryegrass, nitrate, nitrate assimilation, nitrate reductase activity, xylem sap  相似文献   

12.
We examined the effect of pretreatments (18 h at 5 µmoldm–3) with abscisic acid, the ethylene-releasing substance‘Ethephon’, gibberellic acid, indoleacetic acid,kinetin and zeatin on nitrate uptake and in vivo nitrate reductaseactivity (NRA) in roots of nitrogen-depleted Phaseolus vulgarisL. Nitrate uptake showed an apparent induction pattern witha steady state after about 6 h, in all treatments. The nitrateuptake rate after 6 h was unaffected or at most 30% lower aftertreatments with the plant growth regulators. Gibberellic acid, kinetin and zeatin induced substantial NRAin roots in the absence of nitrate, whereas Ethephon enhancedNRA only during nitrate nutrition. Kinetin-induced NRA (Ki-NRA)was maximal after a pretreatment at 1 µmol dm–3,and showed a lag phase of 6–8 h. Ki-NRA was additive tonitrate-induced NRA (NO3-NRA) for at least 24 h, independentof the induction sequence. After full induction, Ki-NRA approximated20% of NO-3-NRA. Abscisic acid counteracted the developmentof Ki-NRA, but not of NO3-NRA. Cycloheximide and tungstatewere equally effective to suppress the development of nitratereductase activity after supply of kinetin or NO3. Our data are consistent with the operation of two independentenzyme fractions (Ki-NRA and NO3-NRA) with apparentlyidentical properties but with separate control mechanisms. Theabsence of major effects of plant growth regulators on the time-courseand rate of nitrate uptake suggests that exogenous regulators,and possibly endogenous phytohormones are of minor importancefor initial nitrate uptake. The differential effect of someregulators on nitrate uptake and root NRA furthermore indicatesthat the processes of uptake and reduction of NO3 arenot obligatory or exclusively coupled to each other.  相似文献   

13.
The uptake rate of carbon and nitrogen (ammonium, nitrate andurea) by the Microcystis predominating among phytoplankton wasinvestigated in the summer of 1984 in Takahamaira Bay of LakeKasumigaura. The Vmax values of Microcystis for nitrate (0.025–0.046h–1) and ammonium (0.15–0.17 h–1) were considerablyhigher than other natural phytoplankton. The ammonium, nitrateand urea uptake by Microcystis was light dependent and was notinhibited with nigh light intensity. The K1 values were farlower than the Ik values. The carbon uptake was not influencedby nitrogen enrichment. Microcystis accelerated the uptake rateby changing Vmax/K s value when nitrogen versus carbon contentin cells declined. Nitrate was scarcely existent in TakahamairiBay during the summer, when Microcystis usually used ammoniumas the nitrogen source. However, the standing stock of ammoniumin the water was far lower than the daily ammonium uptake rates.Therefore, the ammonium in this water had to be supplied becauseof its rapid turn-over time (–0.7–2.6 h).  相似文献   

14.
Rhizosolenia mat abundance, distribution and chemical compositionwere studied on two cruises in the central North Pacific gyrein order to determine large-scale distribution patterns andcontribution to upward nitrogen (N) flux. These macroscopicdiatom mats are composed of multiple species of Rhizosoleniathat exploit subsurface nitrate pools by vertically migratingbelow the euphotic zone. Although numerically dominated by thesmall-diameter species, R.fallax (73–95% of total numbers),mat biovolume was dominated by large-diameter (>50 µmdiameter) Rhizosolenia spp. (85–99% of total volume).Integrated mat abundance was substantially higher when matsaccumulated at the surface during calm weather (  相似文献   

15.
The Uptake of Gaseous Ammonia by the Leaves of Italian Ryegrass   总被引:5,自引:0,他引:5  
Lockyer, D. R. and Whitehead, D. C. 1986. The uptake of gaseousammonia by the leaves of Italian ryegrass.—J. exp. Bot.37: 919–927. Plants of Italian ryegrass (Lolium multiflorum Lam.) grown insoil with two rates of added 15N-labelled nitrate were exposed,in chambers, for 40 d to NH3 in the air at concentrations of16, 118 and 520 µg m–3. At the highest concentrationof NH3, this source provided 47?3% of the total nitrogen inplants grown with the lower rate of nitrate addition (100mgN kg–1 dry soil) and 35?2% with the higher rate (200mgN kg–1 dry soil) At the intermediate concentration ofNH3, the contributions to total plant N were 19?6% and 10?8%,respectively, at low and high nitrate while, at the lowest concentrationof NH3, they were 5?1% and 32%. Most of the N derived from theNH3 remained in the leaves, but some was transported to theroots. The amount of N derived from the NH3 that was presentin the leaves was not reduced by washing the leaves in waterat pH 5?0 before harvesting, indicating that the N was assimilatedby the plant and not adsorbed superficially. Rates of uptakeof NH3 per unit leaf area ranged from 1?7 µg dm–2h–1 at a concentration of 16 µg m–3 to 29?0µg dm–2 h–1 at a concentration of 520 µgm–3 and with the lower rate of nitrate addition. Increasingthe supply of nitrate to the roots slightly reduced the rateof uptake of NH3 per unit leaf area. Uptake of N from the higherrate of nitrate was reduced at the highest concentration ofNH3 in the air. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

16.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

17.
Influx of nitrate into the roots of intact barley plants wasfollowed over periods of 1–15 min using nitrogen-13 asa tracer. Based on measurements taken over 15 min from a rangeof external nitrate concentrations (0·2–250 mmolm–3), the kinetic parameters of influx, Imax and Km, werecalculated. Compared with plants grown in the presence of nitrate throughout,plants that had been starved of N for 3 d showed a significantlygreater value ofImax for 13N-nitrate influx (by a factor of1·4–1·8), but a similar value of Km (12–14mmol m–3). Pre-treating N-starved plants with nitratefor about 5 h further increased the subsequent rate of 13N-nitrateinflux, but had little effect in the unstarved controls. Allowingfor this induction of additional nitrate transport, the differencein rates of nitrate influx in control and N-starved plants wassufficient to account for the previously-observed differencein net uptake by the two groups of plants. In barley plants grown without any exposure to nitrate, butwith ammonium as N-source, both Imax and Km for subsequent 13N-nitrateinflux were significantly decreased (by about one-half) comparedwith the corresponding nitrate-grown controls. The importance of changes in the rate of influx in the regulationof net uptake of nitrate is discussed. Key words: Ion transport, nitrate, influx, kinetic parameters, N-deficiency  相似文献   

18.
Low temperature (6 C) growth was examined in two cultivarsof Vicia faba L. supplied with 4 and 20 mol m–3 N as nitrateor urea. Both cultivars showed similar growth responses to increasedapplied-N concentration regardless of N-form. Total leaf areaincreased, as did root, stem and leaf dry weight, total carboncontent and total nitrogen content. In contrast to findingsat higher growth temperatures, 20 mol m–3 urea-N gavesubstantially greater growth (all parameters measured) than20 mol m–3 nitrate-N. The increased carbon content per plant associated with increasedapplied nitrate or urea concentration, or with urea in comparisonto nitrate, was due to a greater leaf area per plant for CO2uptake and not an increased CO2, uptake per unit area, carbon,chlorophyll or dry weight, all of which either remained constantor decreased. Nitrate reductase activity was substantial inplants given nitrate but negligible in plants given urea. Neitherfree nitrate nor free urea contributed greatly to nitrogen levelsin plant tissues. It is concluded that there is no evidence for a restrictionin nitrate reduction at 6 C, and it is likely that urea givesgreater growth than nitrate because of greater rates of uptake. Vicia faba, broad bean, low temperature growth, carbon assimilation, nitrogen assimilation  相似文献   

19.
Whitehead, D. C. and Lockyer, D. R. 1986. The influence of theconcentration of gaseous ammonia on its uptake by the leavesof Italian ryegrass, with and without an adequate supply ofnitrogen to the roots.—J. exp. Bot. 38: 818–827. Plants of Italian ryegrass (Lolium multiflorum Lam.) were grownin pots of soil with two rates of 15N-labclled nitrate, oneproviding adequate, and the other less than adequate, N formaximum growth. After 25 d in a controlled environment cabinet,the plants were transferred to chambers and exposed for 33 dto NH3in the air at one of nine concentrations ranging from14 to 709 µg NH3 m–3. Increasing the concentrationof NH3 in the air increased the dry weight of the shoots ofplants grown at the lower but not the higher rate of nitrate.The content of total N in the plant shoots (% dry weight) waslinearly related to NH3 concentration; at 709 µg NH3 andin both sets of plants it was more than double the content at14 µg NH3 m–3. Calculations, based on 15N enrichment,indicated that the amount of N taken up from the NH3 per unitleaf area increased linearly with increasing concentration ofNH3 in the air uptake (µg dm–2 h–1) = 0.1009xat the lower rate of nitrate and 0-0829x at the higher rateof nitrate, where x is the concentration of NH3 in the air expressedas µg NH3m–3. The proportion of the total plant N that was derived from theNH3 ranged from 4?0% at a concentration of 14 µg NH3 m–3with the higher rate of nitrate addition to 77?5% at a concentrationof 709 µg m–3 with the lower rate of nitrate addition.The proportions of the total N in the water-insoluble proteinof the leaf tissue that were derived from nitrate and gaseousNH3 were similar to the proportions in the whole leaf material. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

20.
The method for assay of in vivo nitrate reductase (NR) activitywas standardized for barley (Hordeum vulgare L.). NR activitywas determined in the various organs of the main shoot of field-grownJyoti barley at 40 kg N ha–1. Total nitrate reductaseactivity (TNRA) of each organ for the period it was metabolicallyactive was calculated. The NR activity was highest in the laminae,followed by the sheaths, reproductive organs; and internodes.The NR activity was high in the first-formed laminae and itshowed a decline in the ones formed subsequently. The valuesvaried from 43.2 ± 4.33 to 7.2 ± 1.49 µmolNO3 reduced g–1 dry wt. h–1. Maximum TNRAin the laminae, sheath, and internodes was at 49, 84, and 84–93d after sowing, respectively. The TNRA of the main shoot asa whole showed three peaks, one around 49 d, a second around63 d, and a third around 84 d after sowing. Correlation coefficient(r) between NR and NO3 concentration was highly significantin the laminae and sheath viz. 0.76*** and 0.62***, respectively.The results are discussed in relation to alteration in managementpractices to maximize nitrate assimilatory activity and theamount of reduced N harvested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号