首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用基因工程菌VGl(pTUl4)产聚β-羟基丁酸酯的研究   总被引:1,自引:0,他引:1  
本文对透明颤菌血红蛋白基因(vgb)和λ噬菌体解基因(S^-RRz)在不同突破主大肠杆菌中的外源表达及其在聚β-羟基丁酸酯(PHB)生产中的应用进行了研究。实验结果表明,同时携带vgb、S^-RRz和phbCAB三种基因的产PHB基因工程菌VG1(pTU14),经过82h的摇瓶补料分批培养。菌体浓度可以高达25.9g/L,PHB百分含量则可在52h时达到95%以上;此外,该菌株不仅可以实现摇瓶高密  相似文献   

2.
NAD kinase was overexpressed to enhance the accumulation of poly(3-hydroxybutyrate) (PHB) in recombinant Escherichia coli harboring PHB synthesis pathway via an accelerated supply of NADPH, which is one of the most crucial factors influencing PHB production. A high copy number expression plasmid pE76 led to a stronger NAD kinase activity than that brought about by the low copy number plasmid pELRY. Overexpressing NAD kinase in recombinant E. coli was found not to have a negative effect on cell growth in the absence of PHB synthesis. Shake flask experiments demonstrated that excess NAD kinase in E. coli harboring the PHB synthesis operon could increase the accumulation of PHB to 16–35 wt.% compared with the controls; meanwhile, NADP concentration was enhanced threefold to sixfold. Although the two NAD kinase overexpression recombinants exhibited large disparity on NAD kinase activity, their influence on cell growth and PHB accumulation was not proportional. Under the same growth conditions without process optimization, the NAD kinase-overexpressing recombinant produced 14 g/L PHB compared with 7 g/L produced by the control in a 28-h fermentor study. In addition, substrate to PHB yield Y PHB/glucose showed an increase from 0.08 g PHB/g glucose for the control to 0.15 g PHB/g glucose for the NAD kinase-overexpressing strain, a 76% increase for the Y PHB/glucose. These results clearly showed that the overexpression of NAD kinase could be used to enhance the PHB synthesis.  相似文献   

3.
Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, β-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.  相似文献   

4.
The biosynthesis of P(3HB-3HV) and P(3HB-4HB) was carried out using transformants of Alcaligenes eutrophus harboring the cloned phbCAB, phbAB, and phbC genes. The molar fractions and yields of 3HV and 4HB increased significantly by enhancing enzymes related to PHB biosynthesis compared to the parent strain. Especially, PHB synthase was the most critical enzyme that regulated monomer compositions of P(3HB-3HV) and P(3HB-4HB) in the transformant. Even at the lower propionate or 4-hydroxybutyrate concentrations, the high molar fractions of 3HV or 4HB could be accumulated. The enforcement of PHB biosynthetic enzymes through the transformation of corresponding genes was identified to be an excellent method for modification of monomer composition of copolymer of A. eutrophus.  相似文献   

5.
Aspartate availability was increased in Corynebacterium glutamicum strains to assess its influence on lysine production. Upon addition of fumarate to a strain with a feedback-resistant aspartate kinase, the lysine yield increased from 20 to 30 mM. This increase was accompanied by the excretion of malate and succinate. In this strain, fumaric acid was converted to aspartate by fumarate hydratase, malate dehydrogenase, and aspartate amino transferase activity. To achieve the direct conversion of fumarate to aspartate, shuttle vectors containing the aspA+ (aspartase) gene of Escherichia coli were constructed. These constructions were introduced into C. glutamicum, which was originally devoid of the enzyme aspartase. This resulted in an aspartase activity of 0.3 U/mg (70% of the aspartase activity in E. coli) with plasmid pZ1-9 and an activity of up to 1.05 U/mg with plasmid pCE1 delta. In aspA+-expressing strains, lysine excretion was further increased by 20%. Additionally, in strains harboring pCE1 delta, up to 27 mM aspartate was excreted. This indicates that undetermined limitations in the sequence of reactions from aspartate to lysine exist in C. glutamicum.  相似文献   

6.
Aspartate availability was increased in Corynebacterium glutamicum strains to assess its influence on lysine production. Upon addition of fumarate to a strain with a feedback-resistant aspartate kinase, the lysine yield increased from 20 to 30 mM. This increase was accompanied by the excretion of malate and succinate. In this strain, fumaric acid was converted to aspartate by fumarate hydratase, malate dehydrogenase, and aspartate amino transferase activity. To achieve the direct conversion of fumarate to aspartate, shuttle vectors containing the aspA+ (aspartase) gene of Escherichia coli were constructed. These constructions were introduced into C. glutamicum, which was originally devoid of the enzyme aspartase. This resulted in an aspartase activity of 0.3 U/mg (70% of the aspartase activity in E. coli) with plasmid pZ1-9 and an activity of up to 1.05 U/mg with plasmid pCE1 delta. In aspA+-expressing strains, lysine excretion was further increased by 20%. Additionally, in strains harboring pCE1 delta, up to 27 mM aspartate was excreted. This indicates that undetermined limitations in the sequence of reactions from aspartate to lysine exist in C. glutamicum.  相似文献   

7.
The supra molecular weight poly ([R]-3-hydroxybutyrate) (PHB), having a molecular weight greater than 2 million Da, has recently been found to possess improved mechanical properties compared with the normal molecular weight PHB, which has a molecular weight of less than 1 million Da. However, applications for this PHB have been hampered due to the difficulty of its production. Reported here, is the development of a new metabolically engineeredEscherichia coli strain and its fermentation for high level production of supra molecular weight PHB. RecombinantE. coli strains, harboring plasmids of different copy numbers containing theAlcaligenes latus PHB biosynthesis genes, were cultured and the molecular weights of the accumulated PHB were compared. When the recombinantE. coli XL 1-Blue, harboring a medium-copy-number pJC2 containing theA. latus PHB biosynthesis genes, was cultivated by fed-batch culture at pH 6.0, supra molecular weight PHB could be produced at up to 89.8 g/L with a productivity of 2.07 g PHB/L-h. The molecular weight of PHB obtained under these conditions was as high as 22 MDa, exceeding by an order of magnitude the molecular weight of PHB typically produced inRalstonia eutropha or recombinantE. coli  相似文献   

8.
A stable high-copy-number plasmid pSYL105 containing the Alcaligenes eutrophus polyhydroxyalkanoic acid (PHA) biosynthesis genes was constructed. This plasmid was transferred to seven Escherichia coli strains (K12, B, W, XL1-Blue, JM109, DH5alpha, and HB101), which were subsequently compared for their ability to synthesize and accumulate ploy- (3-hydroxybutyric acid) (PHB). Growth of recombinant cells and PHB synthesis were investigated in detail in Luria-Bertani (LB) medium containing 20 g/L glucose. Cell growth, the rate of PHB synthesis, the extent of PHB accumulation, the amount of glucose utilized, and the amount of acetate formed varied from one strain to another. XL1-Blue (pSYL105) and B (pSYL105) synthesized PHB at the fastest rate, which was ca. 0.2 g PHB/g true cell mass-h, and produced PHB up to 6-7 g/L. The yields of cell mass, true cell mass, and PHB varied considerably among the strains. The PHB yield of XL1-Blue (pSYL105) in LB plus 20 g/L glucose was as high as 0.369 g PHB/g glucose. Strains W (pSYL105) and K12 (pSYL105) accumulated the least amount of PHB with the lowest PHB yield at the lowest synthesis rate. JM109 (pSYL105) accumulated PHB to the highest extent (85.6%) with relatively low true cell mass (0.77 g/L). Considerable filamentation of cells accumulating PHB was observed for all strains except for K12 and W, which seemed to be due either to the overexpression of the foreign PHA biosynthesis enzymes or to the accumulation of PHB. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
The heat-inducible expression vectors for Corynebacterium glutamicum and C. ammoniagenes were constructed by using the lambdaOL1 and the cryptic promoters, CJ1 and CJ4 that express genes constitutively in C. ammoniagenes.. Although the promoters were isolated from C. ammoniagenes, CJ1 and CJ4 were also active in C. glutamicum. To construct vectors, the OL1 from the lambdaPL promoter was isolated and fused to the CJ1 and CJ4 promoters by recombinant PCR. The resulting artificial promoters, CJ1O and CJ4O, which have one lambdaOL1, and CJ1OX2, which has two successive lambdaOL1, were fused to the green fluorescent protein (GFP) gene followed by subcloning into pCES208. The expression of GFP in the corynebacteria harboring the vectors was regulated successfully by the temperature sensitive cI857 repressor. Among them, C. ammoniagenes harboring plasmid pCJ1OX2G containing GFP fused to CJ1OX2 showed more GFP than the other ones and the expression was tightly regulated by the repressor. To construct the generally applicable expression vector using the plasmid pCJ1OX2G, the His-tag, enterokinase (EK) moiety, and the MCS were inserted in front of the GFP gene. Using the vector, the expression of pyrR from C. glutamicum was tried by temperature shift-up. The results indicated that the constructed vectors (pCeHEMG) can be successfully used in the expression and regulation of foreign genes in corynebacteria.  相似文献   

10.
The early stages of poly(3-hydroxybutyrate) (PHB) accumulation were analyzed in vivo by fluorescence microscopy in Rhodospirillum rubrum, Ralstonia eutropha, and in recombinant Escherichia coli harboring the PHB biosynthesis genes phaCAB of R. eutropha. PHB granules were stained with Nile red and by expression of a phasin-enhanced yellow fluorescent protein fusion protein. Distribution of PHB granules at the early stages of PHB accumulation frequently occurred near the cell poles and near the cell wall in all three strains investigated. This is the first evidence obtained from living cells that PHB synthesis initiates not randomly but at discrete regions in bacteria.  相似文献   

11.
F Wang  S Y Lee 《Applied microbiology》1997,63(12):4765-4769
Recombinant Escherichia coli XL1-Blue harboring a high-copy-number plasmid containing the Alcaligenes eutrophus polyhydroxyalkanoate synthesis genes could efficiently synthesize poly(3-hydroxybutyrate) (PHB) in a complex medium containing yeast extract and tryptone but not in a defined medium. One of the reasons for the reduced PHB production in a defined medium was thought to be severe filamentation of cells in this medium. By overexpressing an essential cell division protein, FtsZ, in recombinant E. coli producing PHB, filamentation could be suppressed and PHB could be efficiently produced in a defined medium. A high PHB concentration of 149 g/liter, with high productivity of 3.4 g of PHB/liter/h, could be obtained by the pH-stat fed-batch culture of the filamentation-suppressed recombinant E. coli in a defined medium. It was also found that insufficient oxygen supply at a dissolved oxygen concentration (DOC) of 1 to 3% of air saturation during active PHB synthesis phase did not negatively affect PHB production. By growing cells to the concentration of 110 g/liter and then controlling the DOC in the range of 1 to 3% of air saturation, a PHB concentration of 157 g/liter and PHB productivity of 3.2 g of PHB/liter/h were obtained. For the scale-up studies, fed-batch culture was carried out in a 50-liter stirred tank fermentor, in which the DOC decreased to zero when cell concentration reached 50 g/liter. However, a relatively high PHB concentration of 101 g/liter and PHB productivity of 2.8 g of PHB/liter/h could still be obtained, which demonstrated the possibility of industrial production of PHB in a defined medium by employing the filamentation-suppressed recombinant E. coli.  相似文献   

12.
运动发酵单胞菌是一种很有潜力的酒精生产菌。PHB是生物合成的一种聚酯,有研究表明,该类物质在微生物体内的积累能够提高宿主菌的抗逆能力。本文对运动发酵单胞菌进行了如下改造:将PHB合成操纵子phbCAB与来源于运动发酵单胞菌的丙酮酸脱羧酶的启动子准确融合,插入广泛宿主载体pBBR1MCS-1中,并利用电转化的方法转入运动发酵单胞菌中。在重组菌中检测到了PhaA和PhaB的酶活;并首次在运动发酵单胞菌中实现了PHB的积累。摇瓶实验表明,前48小时重组菌的乙醇积累量提高了约10%,后续发酵中可能由于葡萄糖耗尽,重组菌与野生菌乙醇积累量差别不大。  相似文献   

13.
The development of microbial strains for the enhanced production of α-ketoglutarate (α-KG) was investigated using a strain of Corynebacterium glutamicum that overproduces of l-glutamate, by disrupting three genes involved in the α-KG biosynthetic pathway. The pathways competing with the biosynthesis of α-KG were blocked by knocking out aceA (encoding isocitrate lyase, ICL), gdh (encoding glutamate dehydrogenase, l-gluDH), and gltB (encoding glutamate synthase or glutamate-2-oxoglutarate aminotransferase, GOGAT). The strain with aceA, gltB, and gdh disrupted showed reduced ICL activity and no GOGAT and l-gluDH activities, resulting in up to 16-fold more α-KG production than the control strain in flask culture. These results suggest that l-gluDH is the key enzyme in the conversion of α-KG to l-glutamate; therefore, prevention of this step could promote α-KG accumulation. The inactivation of ICL leads the carbon flow to α-KG by blocking the glyoxylate pathway. However, the disruption of gltB did not affect the biosynthesis of α-KG. Our results can be applied in the industrial production of α-KG by using C. glutamicum as producer.  相似文献   

14.
The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes.  相似文献   

15.
Fermentation strategies for the production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes were developed. The pH-stat fed-batch cultures of E. coli CGSC 4401 harboring pJC4, a stable plasmid containing the A. latus PHA biosynthesis genes, were carried out with a concentrated whey solution containing 280 g of lactose equivalent per liter. Final cell and PHB concentrations of 119.5 and 96.2 g/liter, respectively, were obtained in 37.5 h, which resulted in PHB productivity of 2.57 g/liter/h.  相似文献   

16.
Polyhydroxyalkanoates (PHAs) are polyoxoesters that are produced by diverse bacteria and that accumulate as intracellular granules. Phasins are granule-associated proteins that accumulate to high levels in strains that are producing PHAs. The accumulation of phasins has been proposed to be dependent on PHA production, a model which is now rigorously tested for the phasin PhaP of Ralstonia eutropha. R. eutropha phaC PHA synthase and phaP phasin gene replacement strains were constructed. The strains were engineered to express heterologous and/or mutant PHA synthase alleles and a phaP-gfp translational fusion in place of the wild-type alleles of phaC and phaP. The strains were analyzed with respect to production of polyhydroxybutyrate (PHB), accumulation of PhaP, and expression of the phaP-gfp fusion. The results suggest that accumulation of PhaP is strictly dependent on the genetic capacity of strains to produce PHB, that PhaP accumulation is regulated at the level of both PhaP synthesis and PhaP degradation, and that, within mixed populations of cells, PhaP accumulation within cells of a given strain is not influenced by PHB production in cells of other strains. Interestingly, either the synthesis of PHB or the presence of relatively large amounts of PHB in cells (>50% of cell dry weight) is sufficient to enable PhaP synthesis. The results suggest that R. eutropha has evolved a regulatory mechanism that can detect the synthesis and presence of PHB in cells and that PhaP expression can be used as a marker for the production of PHB in individual cells.  相似文献   

17.
The amino acid L-serine is required for pharmaceutical purposes, and the availability of a sugar-based microbial process for its production is desirable. However, a number of intracellular utilization routes prevent overproduction of L-serine, with the essential serine hydroxymethyltransferase (SHMT) (glyA) probably occupying a key position. We found that constructs of Corynebacterium glutamicum strains where chromosomal glyA expression is dependent on Ptac and lacIQ are unstable, acquiring mutations in lacIQ, for instance. To overcome the inconvenient glyA expression control, we instead considered controlling SHMT activity by the availability of 5,6,7,8-tetrahydrofolate (THF). The pabAB and pabC genes of THF synthesis were identified and deleted in C. glutamicum, and the resulting strains were shown to require folate or 4-aminobenzoate for growth. Whereas the C. glutamicum DeltasdaA strain (pserACB) accumulates only traces of L-serine, with the C. glutamicum DeltapabABCDeltasdaA strain (pserACB), L-serine accumulation and growth responded in a dose-dependent manner to an external folate supply. At 0.1 mM folate, 81 mM L-serine accumulated. In a 20-liter controlled fed-batch culture, a 345 mM L-serine accumulation was achieved. Thus, an efficient and highly competitive process for microbial l-serine production is available.  相似文献   

18.
Nine anaerobic promoters were cloned and constructed upstream of PHB synthesis genes phbCAB from Ralstonia eutropha for the micro- or anaerobic PHB production in recombinant Escherichia coli. Among the promoters, the one for alcohol dehydrogenase (P adhE ) was found most effective. Recombinant E. coli JM 109 (pWCY09) harboring P adhE and phbCAB achieved a 48% PHB accumulation in the cell dry weight after 48 h of static culture compared with only 30% PHB production under its native promoter. Sixty-seven percent PHB was produced in the dry weight (CDW) of an acetate pathway deleted (Δpta deletion) E. coli JW2294 harboring the vector pWCY09. In a batch process conducted in a 5.5-l NBS fermentor containing 3 l glucose LB medium, E. coli JW2294 (pWCY09) grew to 7.8 g/l CDW containing 64% PHB after 24 h of microaerobic incubation. In addition, molecular weight of PHB was observed to be much higher under microaerobic culture conditions. The high activity of P adhE appeared to be the reason for improved micro- or anaerobic cell growth and PHB production while high molecular weight contributed to the static culture condition.  相似文献   

19.
【背景】大肠杆菌由于生长性能优良、遗传背景清晰,常被用作苏氨酸生产菌。【目的】敲除大肠杆菌Escherichia coli THR苏氨酸合成途径的非必需基因,并异源表达苏氨酸合成必需的关键酶,构建一株苏氨酸高产菌株。【方法】利用FLP/FRT重组酶系统,敲除E. coli THR中lysC、pfkB和sstT,同时进行谷氨酸棒杆菌中lysC~(fbr)、thrE和丙酮丁醇梭菌中gapC的重组质粒构建并转化到宿主菌中。【结果】以E. coli THR为出发菌株,敲除其苏氨酸合成途径中表达天冬氨酸激酶Ⅲ (AKⅢ)的基因lysC、磷酸果糖激酶Ⅱ基因pfkB及苏氨酸吸收蛋白表达基因sstT,使菌株积累苏氨酸的产量达到75.64±0.35g/L,比出发菌株增加9.9%。随后异源表达谷氨酸棒杆菌中解除了反馈抑制的天冬氨酸激酶(lysC~(fbr))、苏氨酸分泌转运蛋白(thrE)及丙酮丁醇梭菌中由gapC编码的NADP+依赖型甘油醛-3-磷酸脱氢酶,获得重组菌株E. coli THR6菌株。该菌株积累苏氨酸的产量提高到105.3±0.5 g/L,糖酸转化率提高了43.20%,单位产酸能力提高到5.76 g/g DCW,最大生物量为18.26 g DCW/L。【结论】单独敲除某个基因或改造某个途径不能使苏氨酸大量合成和积累,对多个代谢途径共同改造是构建苏氨酸工程菌的最有效方法。  相似文献   

20.
Hyaluronic acid (HA) has been industrially produced using the gram-positive bacterium Streptococcus zooepidemicus. Large amount of lactic acid formation was one of the important factors that restricted cell growth and HA productivity and lowered the substrate to HA conversion efficiency in a fermentor. In this study, polyhydroxybutyrate (PHB) synthesis genes (phbCAB) of Ralstonia eutropha were cloned from the plasmid pBHR68 and were inserted into the plasmid pEU308, an expression vector for gram-positive bacteria. The plasmid was transformed into S. zooepidemicus by electroporation. β-Ketothiolase (PhbA), acetoacetyl-CoA reductase (PhbB), and polyhydroxyalkanoate (PHA) synthase (PhbC) activity assays were carried out to demonstrate the expression of these genes. The PhbA and PhbB activities were 3.13 and 1.23 U mg−1, respectively. No PhbC activities were detected. In shake flask studies, there was no obvious difference between the wild-type and recombinant S. zooepidemicus harboring phbCAB genes in terms of lactic acid and HA formation. However, in fermentor studies, the recombinant produced only 40 g L−1 lactic acid and 7.5 g L−1 HA, whereas the wild type produced 65 g L−1 lactic acid and 5.5 g L−1 HA. These results suggested that expression of phbCAB genes in S. zooepidemicus could help regulate HA production metabolism. Because the lactic acid formation in S. zooepidemicus was sensitive to cellular oxidation/reduction potential, it is proposed that the PHB synthesis pathway could act as a regulator to adjust the cellular oxidation/reduction potential. This is the first study demonstrating that PHA synthesis related to energy and carbon metabolism could be employed as a pathway to regulate other cellular metabolism and possibly to regulate the production of other metabolic products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号