首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Abstract

We have designed a new type of antisense oligonucleotide, containing two hairpin loop structures with RNA/DNA base pairs (sense (RNA) and antisense (DNA)) in the double helical stem (nicked and circular dumbbell DNA/RNA chimeric oligonucleotides). The reaction of the nicked and circular dumbbell DNA/RNA chimeric oligonucleotides with RNase H gave the corresponding anti-DNA together with the sense RNA cleavage products. These oligonucleotides were more resistant to exonuclease attack. We also describe the anti-Fluv activities of nicked and circular dumbbell DNMA chimeric oligonucleotides.  相似文献   

3.
Abstract

We have designed a new type of oligodeoxyribonucleotide. These oligodeoxyribonucleotides form two hairpin loop structures with base pairs (sense and antisense) in the double helical stem at the 3′ and 5′-ends (nicked dumbbell oligonucleotides). The nicked dumbbell oligonucleotides are molecules with free ends that are more resistant to exonuclease attack. Furthermore, the nicked dumbbell oligonucleotide containing phosphorothioate (P=S) bonds in the hairpin loops has increased nuclease resistance, as compared to the unmodified nicked oligonucleotide. The binding of the nicked dumbbell oligonucleotide to RNA is lower than that of a single-stranded DNA. We also describe the anti-HIV activity of nicked dumbbell oligonucleotides.

  相似文献   

4.
5.
Design of antisense oligonucleotides stabilized by locked nucleic acids   总被引:24,自引:14,他引:10  
The design of antisense oligonucleotides containing locked nucleic acids (LNA) was optimized and compared to intensively studied DNA oligonucleotides, phosphorothioates and 2′-O-methyl gapmers. In contradiction to the literature, a stretch of seven or eight DNA monomers in the center of a chimeric DNA/LNA oligonucleotide is necessary for full activation of RNase H to cleave the target RNA. For 2′-O-methyl gapmers a stretch of six DNA monomers is sufficient to recruit RNase H. Compared to the 18mer DNA the oligonucleotides containing LNA have an increased melting temperature of 1.5–4°C per LNA depending on the positions of the modified residues. 2′-O-methyl nucleotides increase the Tm by only <1°C per modification and the Tm of the phosphorothioate is reduced. The efficiency of an oligonucleotide in supporting RNase H cleavage correlates with its affinity for the target RNA, i.e. LNA > 2′-O-methyl > DNA > phosphorothioate. Three LNAs at each end of the oligonucleotide are sufficient to stabilize the oligonucleotide in human serum 10-fold compared to an unmodified oligodeoxynucleotide (from t1/2 = ~1.5 h to t1/2 = ~15 h). These chimeric LNA/DNA oligonucleotides are more stable than isosequential phosphorothioates and 2′-O-methyl gapmers, which have half-lives of 10 and 12 h, respectively.  相似文献   

6.
Ribonuclease H (RNase H) which recognizes and cleaves the RNA strand of mismatched RNA-DNA heteroduplexes can induce non-specific effects of antisense oligonucleotides. In a previous paper [Larrouy et al. (1992), Gene, 121, 189-194], we demonstrated that ODN1, a phosphodiester 15mer targeted to the AUG initiation region of alpha-globin mRNA, inhibited non-specifically beta-globin synthesis in wheat germ extract due to RNase H-mediated cleavage of beta-globin mRNA. Specificity was restored by using MP-ODN2, a methylphosphonate-phosphodiester sandwich analogue of ODN1, which limited RNase H activity on non-perfect hybrids. We report here that 2'-O-alkyl RNA-phosphodiester DNA sandwich analogues of ODN1, with the same phosphodiester window as MP-ODN2, are non-specific inhibitors of globin synthesis in wheat germ extract, whatever the substituent (methyl, allyl or butyl) on the 2'-OH. These sandwich oligomers induced the cleavage of non-target beta-globin RNA sites, similarly to the unmodified parent oligomer ODN1. This is likely due to the increased affinity of 2'-O-alkyl-ODN2 chimeric oligomers for both fully and partly complementary RNA, compared to MP-ODN2. In contrast, the fully modified 2'-O-methyl analogue of ODN1 was a very effective and highly specific antisense sequence. This was ascribed to its inability (i) to induce RNA cleavage by RNase H and (ii) to physically prevent the elongation of the polypeptide chain.  相似文献   

7.
We have previously described the characterization of a 20mer phosphorothioate oligodeoxynucleotide (ISIS 4189) which inhibits murine protein kinase C-alpha (PKC-alpha) gene expression, both in vitro and in vivo. In an effort to increase the antisense activity of this oligonucleotide, 2'-O-propyl modifications have been incorporated into the 5'- and 3'-ends of the oligonucleotide, with the eight central bases left as phosphorothioate oligodeoxynucleotides. Hybridization analysis demonstrated that these modifications increased affinity by approximately 8 and 6 degrees C per oligonucleotide for the phosphodiester (ISIS 7815) and phosphorothioate (ISIS 7817) respectively when hybridized to an RNA complement. In addition, 2'-O-propyl incorporation greatly enhanced the nuclease resistance of the oligonucleotides to snake venom phosphodiesterase or intracellular nucleases in vivo. The increase in affinity and nuclease stability of ISIS 7817 resulted in a 5-fold increase in the ability of the oligonucleotide to inhibit PKC-alpha gene expression in murine C127 cells, as compared with the parent phosphorothioate oligodeoxynucleotide. Thus an RNase H-dependent phosphorothioate oligodeoxynucleotide can be modified as a 2'-O-propyl 'chimeric' oligonucleotide to provide a significant increase in antisense activity in cell culture.  相似文献   

8.
The properties of new chimeric oligodeoxynucleotides made of short sequences (tetramers, pentamers, octamers, and decamers) bridged by hexamethylenediol and hexaethylene glycol linkers have been investigated. These chimeric oligonucleotides showed an improved resistance toward snake venom 3'-phosphodiesterase, with an increased stability when a terminal 3'-3'-internucleotide phosphodiester bond is present. It also has been demonstrated that the hybrid complexes formed by bridged oligonucleotides and a complementary 20-mer RNA are able to elicit the activity of ribonuclease H (RNase H) from Escherichia coli. The substrate properties of chimeric oligonucleotides depend on the length of the oligonucleotide fragments bridged by linkers. Introduction of a nonnucleotide spacer into the native oligonucleotide only slightly hampers the extent of the RNA hydrolysis in the hybrid complexes, whereas a modification of the site of reaction is observed as a possible consequence of the steric disturbance due to the aliphatic linkers. Hence, these new chimeric oligonucleotides, namely, short oligonucleotide fragments bridged by nonnucleotide linkers, demonstrate a favorable combination of exonuclease resistance and high substrate activity toward RNase H. As a consequence, these chimeric oligonucleotides could be proposed as new, promising analogs to be used in the antisense strategy.  相似文献   

9.
BACKGROUND: A number of genetic defects in humans are due to point mutations in a single, often tightly regulated gene. Genetic treatment of such defects is preferably done by correcting only the altered base pair at the endogenous locus rather than by a gene replacement strategy involving viral vectors. Promisingly high repair rates have been achieved in some systems with the non-viral approach of transfecting chimeric RNA/DNA oligonucleotides (chimeraplasts). However, since this technique does not yet perform robustly, several parameters thought to be important in oligonucleotide-mediated gene repair were examined. METHODS: A series of transgenic HEK-293 cell clones has been established harboring high or low copy numbers of a point-mutated 'enhanced green fluorescent protein' (EGFP) gene as the target. At the level of single living cells, repair efficiencies were measured by fluorescence-activated cell sorting (FACS) regarding topology (single-stranded, double-stranded), exonuclease protection (four phosphorothioate linkages at both ends), polarity (sense, antisense), and length (13mer, 19mer, 35mer, 69mer) of the oligonucleotide. RESULTS: When targeting chromosomal loci, up to 0.2% corrected cells were obtained with single-stranded unmodified oligodeoxynucleotides, whereas a chimeraplast, its DNA analogue, and double-stranded DNA fragments were practically non-functional. Correction efficiencies correlated with target gene copy numbers. Modifying exonuclease resistance, polarity or length of single-stranded oligodeoxynucleotides did not enhance repair efficacy above the sub-percentage range. CONCLUSIONS: Successful chromosomal reporter gene repair in HEK-293 cells required an oligodeoxynucleotide to be single-stranded. In concert with the gene copy number correlation, functional interaction between the repair molecule and the target site seems to be one bottleneck in targeted gene repair.  相似文献   

10.
We synthesized three 20mer caged circular antisense oligodeoxynucleotides (R20, R20B2 and R20B4) with a photocleavable linker and an amide bond linker between two 10mer oligodeoxynucleotides. With these caged circular antisense oligodeoxynucleotides, RNA-binding affinity and its digestion by ribonuclease H were readily photomodulated. RNA cleavage rates were upregulated ∼43-, 25- and 15-fold for R20, R20B2 and R20B4, respectively, upon light activation in vitro. R20B2 and R20B4 with 2- or 4-nt gaps in the target RNA lost their ability to bind the target RNA even though a small amount of RNA digestion was still observed. The loss of binding ability indicated promising gene photoregulation through a non-enzymatic strategy. To test this strategy, three caged circular antisense oligonucleotides (PS1, PS2 and PS3) with 2′-OMe RNA and phosphorothioate modifications were synthesized to target GFP expression. Upon light activation, photomodulation of target hybridization and GFP expression in cells was successfully achieved with PS1, PS2 and PS3. These caged circular antisense oligonucleotides show promising applications of photomodulating gene expression through both ribonuclease H and non-enzyme involved antisense strategies.  相似文献   

11.
Site-directed cleavage of RNA.   总被引:18,自引:12,他引:6       下载免费PDF全文
Using complementary chimeric oligonucleotides containing deoxyribonucleotides and 2'-O-methylribonucleotides (1), enzymatically synthesized RNA (90 mer) were cleaved at a single site with Escherichia coli RNaseH, either at a hairpin loop or at a stem region. Especially, site-specific cleavage occurred in even the target region being enclosed within a stable, base-paired stem. The method is proved to be generally applicable to RNA containing secondary structures.  相似文献   

12.
Synthesis of chimeric 9-mer oligonucleotides containing methylphosphonate-linkages and locked nucleic acid (LNA) monomers, their binding affinity towards complementary DNA and RNA, and their 3′-exonucleolytic stability are described. The obtained methylphosphonate-DNA/LNA chimeric oligonucleotides display similarly high RNA affinity and RNA selectivity as a corresponding 9-mer DNA/LNA chimeric oligonucleotide, but much higher resistance towards 3′-exonucleolytic degradation.  相似文献   

13.
An enzyme competitive hybridization assay was developed and validated for determination of mouse plasma concentrations of a 15mer antisense phosphodiester oligodeoxyribonucleotide and of two phosphorothioate analogs. Assays were performed in 96-well microtiter plates. The phosphodiester sense sequence was covalently bound to the microwells. The 5'-biotinylated antisense sequence was used as tracer. The principle of the assay involves competitive hybridization of tracer and antisense nucleotide to the solid phase-immobilized sense oligonucleotide. Solid phase- bound tracer oligonucleotide was assayed after reaction with a streptavidin-acetylcholinesterase conjugate, using the colorimetric method of Ellman. As in competitive enzyme immunoassays, coloration was inversely related to the amount of analyte initially present in the sample. The limit of quantification was 900 pM for phosphodiester antisense oligonucleotide using a 100 microl volume of plasma without extraction. Cross-reactivity was negligible after a four base deletion in either the 3'or 5'position. The assay was simple and sensitive, suitable for in vitro screening of oligonucleotide hybridization potency in biological fluids and for measuring the plasma pharmacokinetics of phosphorothioate and phosphodiester sequences.  相似文献   

14.
15.
Dmochowski IJ  Tang X 《BioTechniques》2007,43(2):161, 163, 165 passim
The recent development of caged oligonucletides that are efficiently activated by ultraviolet (UV) light creates opportunities for regulating gene expression with very high spatial and temporal resolution. By selectively modulating gene activity, these photochemical tools will facilitate efforts to elucidate gene function and may eventually serve therapeutic aims. We demonstrate how the incorporation of a photocleavable blocking group within a DNA duplex can transiently arrest DNA polymerase activity. Indeed, caged oligonucleotides make it possible to control many different protein-oligonucleotide interactions. In related experiments, hybridization of a reverse complementary (antisense) oligodeoxynucleotide to target mRNA can inhibit translation by recruiting endogenous RNases or sterically blocking the ribosome. Our laboratory recently synthesized caged antisense oligonucleotides composed of phosphorothioated DNA or peptide nucleic acid (PNA). The antisense oligonucleotide, which was attached to a complementary blocking oligonucleotide strand by a photocleavable linker, was blocked from binding target mRNA. This provided a useful method for photomodulating hybridization of the antisense strand to target mRNA. Caged DNA and PNA oligonucleotides have proven effective at photoregulating gene expression in cells and zebrafish embryos.  相似文献   

16.
Five different target regions along the length of the dengue virus type 2 genome were compared for inhibition of the virus following intracellular injection of the cognate antisense oligonucleotides and their analogs. Unmodified phosphodiester oligonucleotides as well as the corresponding phosphorothioate oligonucleotides were ineffective in bringing about a significant inhibition of the virus. Novel modified phosphorothioate oligonucleotides in which the C-5 atoms of uridines and cytidines were replaced by propynyl groups caused a significant inhibition of the virus. Antisense oligonucleotide directed against the target region near the translation initiation site of dengue virus RNA was the most effective, followed by antisense oligonucleotide directed against a target in the 3' untranslated region of the virus RNA. It is suggested that the inhibitory effect of these novel modified oligonucleotides is due to their increased affinity for the target sequences and that they probably function via an RNase H cleavage of the oligonucleotide:RNA heteroduplex.  相似文献   

17.
Phosphorothioate deoxyribonucleotides (PS-DNA) are among the most widely used antisense inhibitors. PS-DNA exhibits desirable properties such as enhanced nuclease resistance, improved bioavailability, and the ability to induce RNase H mediated degradation of target RNA. Unfortunately, PS-DNA possesses a relatively low binding affinity for target RNA that impacts on its potency in antisense applications. We recently showed that phosphodiester-linked oligonucleotides comprised of 2'-deoxy-2'-fluoro-D-arabinonucleic acid (FANA) exhibit both high binding affinity for target RNA and the ability to elicit RNase H degradation of target RNA [Damha et al. (1998) J. Am. Chem. Soc. 120, 12976]. In the present study, we evaluated the antisense activity of phosphorothioate-linked FANA oligonucleotides (PS-FANA). Oligonucleotides comprised entirely of PS-FANA were somewhat less efficient in directing RNase H cleavage of target RNA as compared to their phosphorothioate-linked DNA counterparts, and showed only weak antisense inhibition of cellular target expression. However, mixed-backbone oligomers comprised of PS-FANA flanking a central core of PS-DNA were found to possess potent antisense activity, inhibiting specific cellular gene expression with EC(50) values of less than 5 nM. This inhibition was a true antisense effect, as indicated by the dose-dependent decrease in both target protein and target mRNA. Furthermore, the appearance of mRNA fragments was consistent with RNase H mediated cleavage of the mRNA target. We also compared a series of PS-[FANA-DNA-FANA] mixed-backbone oligomers of varying PS-DNA core sizes with the corresponding 2'-O-methyl oligonucleotide chimeras, i.e., PS-[2'meRNA-DNA-2'meRNA]. Both types of oligomers showed very similar binding affinities toward target RNA. However, the antisense potency of the 2'-O-methyl chimeric compounds was dramatically attenuated with decreasing DNA core size, whereas that of the 2'-fluoroarabino compounds was essentially unaffected. Indeed, a PS-FANA oligomer containing a single deoxyribonucleotide residue core retained significant antisense activity. These findings correlated exactly with the ability of the various chimeric antisense molecules to elicit RNase H degradation of the target RNA in vitro, and suggest that this mode of inhibition is likely the most important determinant for potent antisense activity.  相似文献   

18.
The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2’-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.  相似文献   

19.
Antisense oligonucleotides with a 2,4-dideoxyhexopyranosyl nucleoside incorporated at the 3'-end and at a mutation site of the Ha-ras oncogene mRNA were synthesized. Melting temperature studies revealed that an A*-G mismatch is more stable than an A*-T mismatch with these hexopyranosyl nucleosides incorporated at the mutation site. The oligonucleotides are stable against enzymatic degradation. RNase H mediated cleavage studies revealed selective cleavage of mutated Ha-ras mRNA. The oligonucleotide containing two pyranose nucleosides at the penultimate position activates RNase H more strongly than natural oligonucleotides. No correlation, however, was found between DNA - DNA or RNA - DNA melting temperatures and RNase H mediated cleavage capacity. Although the A*-G mismatch gives more stable hybridization than the A*-T base pairing, only the oligonucleotides containing an A*-T base pair are recognized by RNase H. This modification is situated 3 base pairs upstream to the cleavage site. Finally, the double pyranose modified oligonucleotide was able to reduce the growth of T24 cells (bladder carcinoma) while the unmodified antisense oligonucleotide was not.  相似文献   

20.
Dodecadeoxyribonucleotides derivatized with 1,10-phenanthroline or psoralen were targeted to the point mutation (G<-->U) in codon 12 of the Ha-ras mRNA. DNA and RNA fragments, 27 nucleotides in length, and containing the complementary sequence of the 12mers, were used to compare the reactivity of the activatable dodecamers (cleavage of the target by the phenanthroline-12mer conjugates; photo-induced cross-linking of psoralen-12mer conjugates to the target). The reactivity of the RNA with the dodecamers was weaker than that of the DNA target. With psoralen-substituted oligonucleotides, it was possible to obtain complete discrimination between the mutated target (which contained a psoralen-reactive T(U) in the 12th codon) and the normal target (which contained G at the same position). When longer Ha-ras RNA fragments were used as targets (120 and 820 nucleotides), very little reactivity was observed. Part of the reactivity could be recovered by using 'helper' oligonucleotides that hybridized to adjacent sites on the substrate. A 'helper' chain length greater than 13 was required to improve the reactivity of dodecamers. However, the dodecanucleotides induced RNase H cleavage of the target RNA in the absence of 'helper' oligonucleotide. Therefore, in the absence of the RNase H enzyme, long oligonucleotides are needed to compete with the secondary structures of the mRNA. In contrast, formation of a ternary complex oligonucleotide-mRNA-RNase H led to RNAT cleavage with shorter oligonucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号