首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have identified and characterized nine antigenic epitopes on the E envelope of Japanese encephalitis virus (JEV) by using mAb. Passive administration of most of the anti-JEV mAb protected mice from i.v. challenge with 1.5 x 10(3) plaque-forming units of JEV, JaGAr-01 strain. Some mAb, which possess high neutralization activity in vitro, showed high protection, and JEV-specific N mAb 503 was found the most protective. Even an injection of 2.5 micrograms/mouse of mAb 503 protected all mice from JEV infection. Furthermore, an injection of about 200 micrograms of mAb 503 on day 5 postinfection protected 82% of the mice, even when JEV was detected in more than 85% of the infected mouse brains. Synergism of protection was observed with mixtures of several mAb directed against different epitopes. Although in a murine macrophage cell line, all of the mAb groups showed antibody-dependent enhancement (ADE) of JEV infectivity in vitro, and only two flavivirus cross-reactive mAb groups showed ADE of dengue virus type 2. The ADE of JEV by mAb seems not to be harmful for in vivo protection experiments, except for two mAb groups: mAb 302 and 201 showed little or no protective activity against JEV infection and, rather, caused early death in infected mice.  相似文献   

3.
Mechanisms of protection of mice from Sendai virus, which is exclusively pneumotropic and causes a typical respiratory disease, by immunization with recombinant vaccinia viruses (RVVs) were investigated. Although the RVV carrying a hemagglutinin-neuraminidase gene of Sendai virus (Vac-HN) propagated in the noses and lungs of mice by either intranasal (i.n.) or intraperitoneal (i.p.) inoculation, no vaccinia virus antigens were detected in the mucosal layer of upper and lower airways of the i.p.-inoculated mice. The mice immunized i.n. with Vac-HN or Vac-F (the RVV carrying a fusion protein gene of Sendai virus) demonstrated the strong resistance to Sendai virus challenge both in the lung and in the nose, whereas the i.p.-immunized mice showed almost no resistance in the nose but showed a partial resistance in the lung. Titration of Sendai virus-specific antibodies in the nasal wash (NW), bronchoalveolar lavage (BAL), and serum collected from the Vac-F-immunized mice showed that the NW from the i.n.-immunized mice contained immunoglobulin A (IgA) antibodies but no IgG and the BAL from the mice contained both IgA and IgG antibodies. On the other hand, neither IgA nor IgG antibodies were detected in the NW from the i.p.-immunized mice and only IgG antibodies were detected in the BAL, although both i.n.- and i.p.-immunized mice exhibited similar levels of serum IgG, IgA, and neutralizing antibodies. The resistance to Sendai virus in the noses of i.n.-immunized mice could be abrogated by the intranasal instillation of anti-mouse IgA but not of anti-IgG antiserum, while the resistance in the lung was not significantly abrogated by such treatments. These results demonstrate that IgA is a major mediator for the immunity against Sendai virus induced by the RVVs and IgG is a supplementary one, especially in the lung, and that the RVV should be intranasally inoculated to induce an efficient mucosal immunity even if it has a pantropic nature.  相似文献   

4.
Cellular and humoral immunity against vaccinia virus infection of mice   总被引:8,自引:0,他引:8  
Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8(+) T cells vs that of CD4(+) T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-gamma responses in CD4(+) and CD8(+) T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4(+) T cells or B cells in IgH(-/-) mice, but was not sensitive to CD8(+) T cell depletion alone. However, a role for CD8(+) T cells in primary protection was demonstrated in MHC class II(-/-) mice, where depleting CD8(+) T cells lead to increase severity of disease. Unlike control MHC class II(-/-) mice, the group depleted of CD8(+) T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8(+) T cells can mediate protective memory. These results collectively show that both CD4(+) and CD8(+) T cell-mediated immunity can contribute to protection against VV infection. However, CD4(+) T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8(+) T cells can contribute to protection against disease.  相似文献   

5.
Glycoproteins gp50, gII, and gIII of pseudorabies virus (PRV) were expressed either individually or in combination by vaccinia virus recombinants. In vitro analysis by immunoprecipitation and immunofluorescence demonstrated the expression of a gII protein of approximately 120 kDa that was proteolytically processed to the gIIb (67- to 74-kDa) and gIIc (58-kDa) mature protein species similar to those observed in PRV-infected cells. Additionally, the proper expression of the 90-kDa gIII and 50-kDa gp50 was observed. All three of these PRV-derived glycoproteins were detectable on the surface of vaccinia virus-PRV recombinant-infected cells. In vivo, mice were protected against a virulent PRV challenge after immunization with the PRV glycoprotein-expressing vaccinia virus recombinants. The coexpression of gII and gIII by a single vaccinia virus recombinant resulted in a significantly reduced vaccination dose required to protect mice against PRV challenge. Inoculation of piglets with the various vaccinia virus-PRV glycoprotein recombinants also resulted in protection against virulent PRV challenge as measured by weight gain. The simultaneous expression of gII and gp50 in swine resulted in a significantly enhanced level of protection as evaluated by weight evolution following challenge with live PRV.  相似文献   

6.
Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.  相似文献   

7.
The effect of orally administered bacterial lipopolysaccharide (LPS) on host resistance against bacterial infections was studied. LPS orally given for 5 consecutive days prior to infection caused no apparent toxic effect and protected mice against Pseudomonas aeruginosa and Listeria monocytogenes infections.  相似文献   

8.
CD8(+) T lymphocytes have been shown to be involved in controlling poxvirus infection, but no protective cytotoxic T-lymphocyte (CTL) epitopes are defined for variola virus, the causative agent of smallpox, or for vaccinia virus. Of several peptides in vaccinia virus predicted to bind HLA-A2.1, three, VETFsm(498-506), A26L(6-14), and HRP2(74-82), were found to bind HLA-A2.1. Splenocytes from HLA-A2.1 transgenic mice immunized with vaccinia virus responded only to HRP2(74-82) at 1 week and to all three epitopes by ex vivo enzyme-linked immunosorbent spot (ELISPOT) assay at 4 weeks postimmunization. To determine if these epitopes could elicit a protective CD8(+) T-cell response, we challenged peptide-immunized HLA-A2.1 transgenic mice intranasally with a lethal dose of the WR strain of vaccinia virus. HRP2(74-82) peptide-immunized mice recovered from infection, while na?ve mice died. Depletion of CD8(+) T cells eliminated protection. Protection of HHD-2 mice, lacking mouse class I major histocompatibility complex molecules, implicates CTLs restricted by human HLA-A2.1 as mediators of protection. These results suggest that HRP2(74-82), which is shared between vaccinia and variola viruses, may be a CD8(+) T-cell epitope of vaccinia virus that will provide cross-protection against smallpox in HLA-A2.1-positive individuals, representing almost half the population.  相似文献   

9.
Nine monoclonal antibodies (MAbs) directed to F protein of Sendai virus were obtained and characterized for their protective ability against Sendai virus infection in mice. None of the MAbs showed hemagglutination-inhibition (HI), hemolysis-inhibition (HLI), or neutralization (NT) activities in vitro when assayed by standard methods. Some of the MAbs, however, showed complement-requiring NT (C-NT) and complement-requiring hemolysis (C-HL) activities when assayed in the presence of complement. Passive immunization experiments revealed that the MAbs with higher C-NT and C-HL activities showed protective activity against Sendai virus pneumonia in mice, and that some MAbs with IgG1 isotype having neither C-NT nor C-HL activity also showed the protective activity. Digestion of the MAbs with pepsin which split immunoglobulin molecules into F(ab')2 and Fc fragments greatly suppressed the protective activity. These results suggest that not only complement-mediated immunological responses such as immune virolysis but also antibody-dependent cellular cytotoxicity (ADCC) and/or immune phagocytosis, in which complement system is not necessarily involved, play an important role in the protection of mice from Sendai virus infection.  相似文献   

10.
11.
目的 探讨抗蝰蛇蛇毒鸡卵黄抗体(immunoglobulin yolk,IgY)经腹腔注射或灌胃对蝰蛇伤小鼠保护作用,为其口服制剂的应用奠定理论基础.方法 用蝰蛇原毒单一抗原免疫母鸡,收集第12天以后的鸡蛋,用水稀释法提取抗蝰蛇毒IgY;间接法ELISA检测IgY的效价和灌胃小鼠体内IgY的吸收时间;以胃排空率实验确定蛇伤前灌胃IgY的最佳时间,以腹腔注射和不同浓度IgY灌胃实验分别检验IgY对蝰蛇伤小鼠的保护作用.结果 初次免疫后第12天开始收集抗体,水稀释法提取的IgY效价为1∶6400;不同浓度IgY灌胃后,2.5~3.5 h胃排空率均达61.8%以上,血浆中抗体效价亦相应达高峰;腹腔注射和IgY灌胃实验对蛇伤小鼠的保护作用明显,小鼠的存活时间与阴性IgY组小鼠相比差异显著(P<0.05);同等效应下,灌胃IgY的有效剂量大约为腹腔注射的10~15倍.结论 抗蝰蛇蛇毒IgY经腹腔注射和灌胃实验均能有效保护蝰蛇伤小鼠.  相似文献   

12.
Mice immunized with two intragastrically administered doses of a replication-deficient recombinant vaccinia virus containing the hemagglutinin and nucleoprotein genes from H1N1 influenza virus developed serum anti-H1 immunoglobulin G (IgG) antibody that completely protected the lungs from challenge with H1N1. Almost all of the mice given two intragastric doses also developed mucosal anti-H1 IgA antibody, and those with high anti-H1 IgA titers had completely protected noses. Intramuscular injection of the vaccine protected the lungs but not the noses from challenge. We also found that the vaccine enhanced recovery from infection caused by a shifted (H3N2) influenza virus, probably through the induction of nucleoprotein-specific cytotoxic T-lymphocyte activity. A replication-deficient, orally administered, enteric-coated, vaccinia virus-vectored vaccine might safely protect humans against influenza.  相似文献   

13.
Vaccinia virus contains a gene, termed SPI-2 or B13R, that is closely related in its sequence to a potent inhibitor of apoptosis from cowpox virus (crmA). Infection by vaccinia virus protects HeLa cells against apoptosis that is induced by an immunoglobulin M antibody against the fas receptor or by tumor necrosis factor alpha. This effect is profoundly reduced when the SPI-2 gene is deleted. The SPI-2 gene, when transiently expressed in these cells, can also protect against apoptosis mediated by these agents. Given the similarity to crmA, it seems likely that SPI-2 functions in an analogous fashion, inhibiting the activity of ICE protease family members and blocking the onset of apoptosis.  相似文献   

14.
Two Macaca fascicularis with preexisting immunity to vaccinia virus were immunized twice with recombinant vaccinia virus expressing SIVmne gp160. Their SIV-specific antibody responses were lower than that of vaccinia-naive animals immunized similarly. Upon repeated boosting with gp160, the SIV-specific antibody titers in vaccinia-primed animals reached similar levels as vaccinia-naive animals and with comparable neutralizing titers. Both animals were protected against repeated intravenous challenge with low-dose SIVmne E11S. These results are significant because SIVmne E11S infection in M. fascicularis is pathogenic and leads to AIDS-like diseases.  相似文献   

15.
The vaccinia virus complement control protein (VCP) is secreted by infected cells and has been shown to inhibit complement activation through interactions with C3b/C4b. It contains four short consensus repeat (SCR) domains. It has been suggested that all four SCRs are required for VCP's activity. To elucidate which SCR domains are involved in abolishing complement-enhanced neutralization of vaccinia virus virions, we generated and characterized a panel of mouse monoclonal antibodies (MAbs) raised against VCP. Ten MAbs were isolated and all recognized VCP on Western blots under reducing conditions as well as native-bound VCP in a sandwich enzyme-linked immunosorbent assay. Three of the 10 MAbs (2E5, 3D1, and 3F11) inhibited VCP's abolition of complement-enhanced neutralization of vaccinia virus virions. These MAbs blocked the interaction of VCP with C3b/C4b. The seven remaining MAbs did not alter VCP function in the complement neutralization assay and recognized VCP bound to C3b/C4b. To understand MAb specificity and mode of interaction with VCP, we mapped the MAb binding regions on VCP. The seven nonblocking MAbs all bound to the first SCR of VCP. One of the blocking MAbs recognized SCR 2 while the other two recognized either SCR 4 or the junction between SCRs 3 and 4, indicating that structural elements involved in the interaction of VCP with C3b/C4b are located within SCR domains 2 and 3 and 4. These anti-VCP MAbs may have clinical significance as therapeutic inhibitors of VCP's complement control activity and may also offer a novel approach to managing vaccinia virus vaccine complications that occur from smallpox vaccination.  相似文献   

16.
17.
The development of a subunit vaccine for smallpox represents a potential strategy to avoid the safety concerns associated with replication-competent vaccinia virus. Preclinical studies to date with subunit smallpox vaccine candidates, however, have been limited by incomplete information regarding protective antigens and the requirement for multiple boost immunizations to afford protective immunity. Here we explore the protective efficacy of replication-incompetent, recombinant adenovirus serotype 35 (rAd35) vectors expressing the vaccinia virus intracellular mature virion (IMV) antigens A27L and L1R and extracellular enveloped virion (EEV) antigens A33R and B5R in a murine vaccinia virus challenge model. A single immunization with the rAd35-L1R vector effectively protected mice against a lethal systemic vaccinia virus challenge. The rAd35-L1R vector also proved more efficacious than the combination of four rAd35 vectors expressing A27L, L1R, A33R, and B5R. Moreover, serum containing L1R-specific neutralizing antibodies afforded postexposure prophylaxis after systemic vaccinia virus infection. In contrast, the combination of rAd35-L1R and rAd35-B5R vectors was required to protect mice against a lethal intranasal vaccinia virus challenge, suggesting that both IMV- and EEV-specific immune responses are important following intranasal infection. Taken together, these data demonstrate that different protective antigens are required based on the route of vaccinia virus challenge. These studies also suggest that rAd vectors warrant further assessment as candidate subunit smallpox vaccines.  相似文献   

18.
Prior inoculation of 7-wk-old A/He mice with the Graffi pseudotype of Friend virus protected the animals against subsequent challenge with Friend virus. Graffi leukemia virus itself did not induce protection, probably because it failed to replicate in these mice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号