首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three homeobox genes, one from Drosophila melanogaster (Drosophila Hmx gene) and two from mouse (murine Hmx2 and Hmx3) were isolated and the full-length cDNAs and corresponding genomic structures were characterized. The striking homeodomain similarity encoded by these three genes to previously identified genes in sea urchin, chick and human, as well as the recently cloned murine Hmx1 gene, and the low homology to other homeobox genes indicate that the Hmx genes comprise a novel gene family. The widespread existence of Hmx genes in the animal kingdom suggests that this gene family is of ancient origin. Drosophila Hmx was mapped to the 90B5 region of Chromosome 3 and at early embryonic stages is primarily expressed in distinct areas of the neuroectoderm and subsets of neuroblasts in the developing fly brain. Later its expression continues in rostral areas of the brain in a segmented pattern, suggesting a putative role in the development of the Drosophila central nervous system. During evolution, mouse Hmx2 and Hmx3 may have retained a primary function in central nervous system development as suggested by their expression in the postmitotic cells of the neural tube, as well as in the hypothalamus, the mesencephalon, metencephalon and discrete regions in the myelencephalon during embryogenesis. Hmx1 has diverged from other Hmx members by its expression in the dorsal root, sympathetic and vagal nerve (X) ganglia. Aside from their expression in the developing nervous system, all three Hmx genes display expression in sensory organ development, and in the adult uterus. Hmx2 and Hmx3 show identical expression in the otic vesicle, whereas Hmx1 is strongly expressed in the developing eye. Transgenic mouse lines were generated to examine the DNA regulatory elements controlling Hmx2 and Hmx3. Transgenic constructs spanning more than 31 kb of genomic DNA gave reproducible expression patterns in the developing central and peripheral nervous systems, eye, ear and other tissues, yet failed to fully recapitulate the endogenous expression pattern of either Hmx2 or Hmx3, suggesting both the presence and absence of certain critical enhancers in the transgenes, or the requirement of proximal enhancers to work synergistically.  相似文献   

2.
The mouse TEN-M/ODZ proteins belong to a new family of type II transmembrane proteins with unknown function. The family consists of four members, which are expressed highly in brain and less in many other tissues. In the present study we have generated specific RNA probes and antibodies to characterize the expression of the 4 Ten-m/Odz genes in the developing and adult central nervous system (CNS) of mice. Ten-m/Odz3 and Ten-m/Odz4 mRNAs were first detectable at E7.5, Ten-m/Odz2 expression started at the 37 somite (E 10.5) stage, while Ten-m/Odz1 mRNA is not found before E15.5. In the adult mouse CNS mRNAs of the 4 Ten-m/Odzs were expressed in distinct patterns, which partially overlapped. Immunostaining and in situ hybridization localized proteins and mRNAs of Ten-m/Odzs in adjacent areas suggesting that TEN-M/ODZ proteins might be transported from the cell body along the axon or that they are shed from the cell surface and diffuse into distant regions.  相似文献   

3.
4.
5.
Drosophila glial cells missing (gcm) is a key gene that determines the fate of stem cells within the nervous system. Two mouse gcm homologs have been identified, but their function in the nervous system remains to be elucidated. To investigate their function, we constructed retroviral vectors harboring Drosophila gcm and two mouse Gcm genes. Expression of these genes appeared to influence fibroblast features. In particular, mouse Gcm1 induced the expression of astrocyte-specific Ca(2+)-binding protein, S100beta, in those cells. Introduction of the mouse Gcm1 gene in cultured cells from embryonic brains resulted in the induction of an astrocyte lineage. This effect was also observed by in utero injection of retrovirus harboring mouse Gcm1 into the embryonic brain. However, cultures from mouse Gcm1-deficient mouse brains did not exhibit significant reductions in the number of astrocytes. Furthermore, in situ hybridization analysis of mouse Gcm1 mRNA revealed distinct patterns of expression in comparison with other well-known glial markers. The mammalian homolog of Drosophila gcm, mouse Gcm1, exhibits the potential to induce gliogenesis, but may function in the generation of a minor subpopulation of glial cells.  相似文献   

6.
Members of the Drosophila Iroquois homeobox gene family are implicated in the development of peripheral nervous system and the regionalization of wing and eye imaginal discs. Recent studies suggest that Xenopus Iroquois homeobox (Irx) genes are also involved in neurogenesis. Three mouse Irx genes, Irx1, Irx2 and Irx3, have been previously identified and are expressed with distinct spatio-temporal patterns during neurogenesis. We report here the cloning and expression analysis of two novel mouse Irx genes, Irx5 and Irx6. Although Irx5 and Irx6 proteins are structurally more related to one another, we find that Irx5 displays a developmental expression pattern strikingly similar to that of Irx3, whereas Irx6 expression resembles that of Irx1. Consistent with the notion that Mash1 is a putative target gene of the Irx proteins, all four Irx genes display an overlapping expression pattern with Mash1 in the developing CNS. In contrast, the Irx genes and Mash1 are expressed in complementary domains in the developing eye and olfactory epithelium.  相似文献   

7.
8.
9.
10.
11.
12.
13.
We report the cloning and expression analysis of a mouse gene encoding a novel transmembrane protein. Expression of Sef is similar to that of Fgf8 and Spry2 during early embryogenesis, being prominent in the forebrain, mid-hindbrain boundary, branchial arches, somites, limb bud and tailbud of mouse embryos. These expression profiles indicate that Fgf8, Spry2 and Sef belong to a synexpression group and suggest that these genes may functionally interact during embryonic development. From E12.5 onwards, partially distinct patterns of expression of these genes are observed in the neuroepithelium, sense organs and endodermal-derived organs, that are known sites of expression of other Fgfs.  相似文献   

14.
We have cloned a novel cDNA encoding a putative transmembrane protein, neurestin, from the rat olfactory bulb. Neurestin was identified based on a sequence similar to that of the second extracellular loops of odorant receptors in the cysteine-rich CC box located immediately after EGF-like motifs. Neurestin shows homology to a neuregulin gene product, human gamma-heregulin, a Drosophila receptor-type pair-rule gene product, Odd Oz (Odz) / Ten(m), and Ten(a), suggesting a possible function in synapse formation and morphogenesis. Recently, a mouse neurestin homolog has independently been cloned as DOC4 from the NIH-3T3 cell line. Northern blot analysis showed that neurestin is highly expressed in the brain and also in other tissues at much lower levels. In situ hybridization studies showed that neurestin is expressed in many types of neurons, including pyramidal cells in the cerebral cortex and tufted cells in the olfactory bulb during development. In adults, neurestin is mainly expressed in olfactory and hippocampal granule cells, which are known to be generated throughout adulthood. Nonetheless, in adults the expression of neurestin was experimentally induced in external tufted cells during regeneration of olfactory sensory neurons. These results suggest a role for neurestin in neuronal development and regeneration in the central nervous system.  相似文献   

15.
Regional differentiation along the dorsoventral (DV) axis of the Drosophila embryo primarily depends on a graded BMP signaling activity generated by Decapentaplegic (Dpp) and Screw (Scw). We have identified triplicated Dpp and Scw target genes Dorsocross1, 2 and 3 (Doc1, 2, 3) that have a conserved T-box domain related to the vertebrate Tbx6 subfamily and act redundantly to induce dorsal structures. Doc genes are expressed in the dorsal region in the early blastoderm. After gastrulation, newly expressed Doc appears in a segmental pattern in the ectoderm. This expression correlates spatially with the second phase of Dpp expression in the ectoderm. Doc expression in the early blastoderm is abolished in either dpp or scw mutant embryos, whereas the ectodermal segmented expression depends only on Dpp. Inactivation of Doc genes with RNAi dramatically affected the development of amnioserosa and wing disc primordia, both of which depend on high levels of BMP signaling, although leg disc primordium, which depends on low levels of BMP, remained intact. Doc1 mRNA expressed in Xenopus embryos induced ventral mesoderm, suppressed activin-induced events and induced Xvent genes, which are analogous to the effects of native Tbx6 and its upstream regulator, BMP-4. These results suggest that the Tbx6 subfamily act in the BMP signaling pathway required for embryonic patterning in both animals.  相似文献   

16.
Leucine-rich repeat containing proteins are involved in protein-protein interactions and they regulate numerous cellular events during nervous system development and disease. Here we have isolated and characterized a new four-membered family of genes from human and mouse, named LRRTMs, that encode putative leucine-rich repeat transmembrane proteins. Human and mouse LRRTMs are highly conserved, and orthologous genes exist in other vertebrates but not in invertebrates. All LRRTMs, except LRRTM4, are located in the introns of different alpha-catenin genes, suggesting coevolution of these two gene families. We show by in situ hybridization and RT-PCR that LRRTM mRNAs are predominantly expressed in the nervous system and that each LRRTM possesses a specific, partially nonoverlapping expression pattern. The structure and expression profile of LRRTM mRNAs suggest that they may have a role in the development and maintenance of the vertebrate nervous system.  相似文献   

17.
Several Drosophila receptor-linked protein tyrosine phosphatases (R-PTPs) are selectively expressed on axons of the developing embryonic central nervous system. The extracellular domains of these axonal R-PTPs are homologous to neural adhesion molecules. Thus, R-PTPs may directly couple cell recognition to signal transduction via control of tyrosine phosphorylation. To examine the function of these molecules during nervous system development, we wished to generate mutations in R-PTP genes. It was unclear whether a mutation in a single R-PTP gene would confer lethality, however, because the similarities in sequence and expression pattern between the axonal R-PTPs suggest that they may have partially redundant functions. To circumvent this problem, we developed a directed mutagenesis strategy based on local transposition of P elements, and used this approach to isolate a null mutation in the DPTP99A gene. This strategy, which we describe in detail here, should be applicable to any Drosophila gene within a lettered division of an appropriately marked P element. Flies lacking DPTP99A expression are viable and fertile, and we have been unable to detect any alterations in the embryonic nervous system of DPTP99A embryos using a variety of antibody markers.  相似文献   

18.
While the expression patterns of segment polarity genes such as engrailed have been shown to be similar in Drosophila melanogaster and Schistocerca americana (grasshopper), the expression patterns of pair-rule genes such as even-skipped are not conserved between these species. This might suggest that the factors upstream of pair-rule gene expression are not conserved across insect species. We find that, despite this, many aspects of the expression of the Drosophila gap gene hunchback are shared with its orthologs in the grasshoppers S. americana and L. migratoria. We have analyzed both mRNA and protein expression during development, and find that the grasshopper hunchback orthologs appear to have a conserved role in early axial patterning of the germ anlagen and in the specification of gnathal and thoracic primordia. In addition, distinct stepped expression levels of hunchback in the gnathal/thoracic domains suggest that grasshopper hunchback may act in a concentration-dependent fashion (as in Drosophila), although morphogenetic activity is not set up by diffusion to form a smooth gradient. Axial patterning functions appear to be performed entirely by zygotic hunchback, a fundamental difference from Drosophila in which maternal and zygotic hunchback play redundant roles. In grasshoppers, maternal hunchback activity is provided uniformly to the embryo as protein and, we suggest, serves a distinct role in distinguishing embryonic from extra-embryonic cells along the anteroposterior axis from the outset of development - a distinction made in Drosophila along the dorsoventral axis later in development. Later hunchback expression in the abdominal segments is conserved, as are patterns in the nervous system, and in both Drosophila and grasshopper, hunchback is expressed in a subset of extra-embryonic cells. Thus, while the expected domains of hunchback expression are conserved in Schistocerca, we have found surprising and fundamental differences in axial patterning, and have identified a previously unreported domain of expression in Drosophila that suggests conservation of a function in extra-embryonic patterning.  相似文献   

19.
The Slit gene encodes a secreted molecule essential for neural development in Drosophila embryos. Here we report the identification of three Slit homologues in the mouse. We demonstrate that the mouse SLIT1 protein can bind ROBO1, a transmembrane receptor implicated in axon guidance. Both whole-mount and section in situ hybridization studies reveal unique and complementary patterns of expression of the three mouse Slit genes and of Robo1, both within the central nervous system and in other developing tissues. The complementary expression patterns of Slit and Robo1 and their in vitro interaction suggest a ligand-receptor relationship. The expression of all three Slit genes in the floor plate suggests that they are likely to share the same functional properties with their Drosophila homologue in midline neural development and axon guidance. The complementary expression of Slit and Robo1 in different subdivisions of the somites suggests their possible function in axon pathfinding and neural crest cell migration. The unique expression pattern in limb and other organs indicates additional potential functions of the Slit gene family.  相似文献   

20.
Identification of novel stress-induced genes downstream of chop.   总被引:20,自引:1,他引:19       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号