首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the animal kingdom the enzymes that catalyze the formation of alpha1,4 fucosylated-glycoconjugates are known only in apes (chimpanzee) and humans. They are encoded by FUT3 and FUT5 genes, two members of the Lewis FUT5-FUT3-FUT6 gene cluster, which had originated by duplications of an alpha3 ancestor gene. In order to explore more precisely the emergence of the alpha1,4 fucosylation, new Lewis-like fucosyltransferase genes were studied in species belonging to the three main primate groups. Two Lewis-like genes were found in brown and ruffed lemurs (prosimians) as well as in squirrel monkey (New World monkey). In the latter, one gene encodes an enzyme which transfers fucose only in alpha1,3 linkage, whereas the other is a pseudogene. Three genes homologous to chimpanzee and human Lewis genes were identified in rhesus macaque (Old World monkey), and only one encodes an alpha3/4-fucosyltransferase. The ability of new primate enzymes to transfer fucose in alpha1,3 or alpha1,3/4 linkage confirms that the amino acid R or W in the acceptor-binding motif "HH(R/W)(D/E)" is required for the type 1/type 2 acceptor specificity. Expression of rhesus macaque genes proved that fucose transfer in alpha1,4 linkage is not restricted to the hominoid family and may be extended to other Old World monkeys. Moreover, the presence of only one enzyme supporting the alpha1,4 fucosylation in rhesus macaque versus two enzymes in hominoids suggests that this function occurred twice independently during primate evolution.  相似文献   

2.
3.
4.
5.

Background

Copy number variants (CNVs), defined as losses and gains of segments of genomic DNA, are a major source of genomic variation.

Results

In this study, we identified over 2,000 human CNVs that overlap with orthologous chimpanzee or orthologous macaque CNVs. Of these, 170 CNVs overlap with both chimpanzee and macaque CNVs, and these were collapsed into 34 hotspot regions of CNV formation. Many of these hotspot regions of CNV formation are functionally relevant, with a bias toward genes involved in immune function, some of which were previously shown to evolve under balancing selection in humans. The genes in these primate CNV formation hotspots have significant differential expression levels between species and show evidence for positive selection, indicating that they have evolved under species-specific, directional selection.

Conclusions

These hotspots of primate CNV formation provide a novel perspective on divergence and selective pressures acting on these genomic regions.  相似文献   

6.
Yan G  Zhang G  Fang X  Zhang Y  Li C  Ling F  Cooper DN  Li Q  Li Y  van Gool AJ  Du H  Chen J  Chen R  Zhang P  Huang Z  Thompson JR  Meng Y  Bai Y  Wang J  Zhuo M  Wang T  Huang Y  Wei L  Li J  Wang Z  Hu H  Yang P  Le L  Stenson PD  Li B  Liu X  Ball EV  An N  Huang Q  Zhang Y  Fan W  Zhang X  Li Y  Wang W  Katze MG  Su B  Nielsen R  Yang H  Wang J  Wang X  Wang J 《Nature biotechnology》2011,29(11):1019-1023
The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus macaque. Comparison with the previously sequenced Indian rhesus macaque reveals that all three macaques maintain abundant genetic heterogeneity, including millions of single-nucleotide substitutions and many insertions, deletions and gross chromosomal rearrangements. By assessing genetic regions with reduced variability, we identify genes in each macaque species that may have experienced positive selection. Genetic divergence patterns suggest that the cynomolgus macaque genome has been shaped by introgression after hybridization with the Chinese rhesus macaque. Macaque genes display a high degree of sequence similarity with human disease gene orthologs and drug targets. However, we identify several putatively dysfunctional genetic differences between the three macaque species, which may explain functional differences between them previously observed in clinical studies.  相似文献   

7.
Despite more than a century of interest in the evolution ofhumans from our close relatives the great apes, the genes responsiblefor phenotypic differences between humans and chimpanzees haveremained elusive. Sequencing of the chimpanzee genome is expectedto identify some 42 million nucleotide differences between humansand chimpanzee. How can we identify the small proportion ofthese differences which are the essential elements of beinghuman? We have analyzed the draft human genome to find regionswhich may have experienced recent strong selection in the humanline. Included in the identified regions are several genes forneural development and function, skeletal development, and fatmetabolism. These observations provide a starting point in thesearch to identify the salient genetic differences between modernhumans and our immediate hominid ancestors. Strong directional selection for a favorable new allele cancause  相似文献   

8.
Population genetic analyses often use polymorphism data from one species, and orthologous genomic sequences from closely related outgroup species. These outgroup sequences are frequently used to identify ancestral alleles at segregating sites and to compare the patterns of polymorphism and divergence. Inherent in such studies is the assumption of parsimony, which posits that the ancestral state of each single nucleotide polymorphism (SNP) is the allele that matches the orthologous site in the outgroup sequence, and that all nucleotide substitutions between species have been observed. This study tests the effect of violating the parsimony assumption when mutation rates vary across sites and over time. Using a context-dependent mutation model that accounts for elevated mutation rates at CpG dinucleotides, increased propensity for transitional versus transversional mutations, as well as other directional and contextual mutation biases estimated along the human lineage, we show (using both simulations and a theoretical model) that enough unobserved substitutions could have occurred since the divergence of human and chimpanzee to cause many statistical tests to spuriously reject neutrality. Moreover, using both the chimpanzee and rhesus macaque genomes to parsimoniously identify ancestral states causes a large fraction of the data to be removed while not completely alleviating problem. By constructing a novel model of the context-dependent mutation process, we can correct polymorphism data for the effect of ancestral misidentification using a single outgroup.  相似文献   

9.
We genotyped a Chinese and an Indian-origin rhesus macaque using the Affymetrix Genome-Wide Human SNP Array 6.0 and cataloged 85,473 uniquely mapping heterospecific SNPs. These SNPs were assigned to rhesus chromosomes according to their probe sequence alignments as displayed in the human and rhesus reference sequences. The conserved gene order (synteny) revealed by heterospecific SNP maps is in concordance with that of the published human and rhesus macaque genomes.Using these SNPs' original human rs numbers, we identified 12,328 genes annotated in humans that are associated with these SNPs, 3674 of which were found in at least one of the two rhesus macaques studied. Due to their density, the heterospecific SNPs allow fine-grained comparisons, including approximate boundaries of intra- and extra-chromosomal rearrangements involving gene orthologs, which can be used to distinguish rhesus macaque chromosomes from human chromosomes.  相似文献   

10.
The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species.  相似文献   

11.
Processed genes are created by retroposition from messenger RNA of expressed genes. The estimated amount of processed copies of genes in the human genome is 10,000-14,000. Some of these might be pseudogenes with the expected pattern for nonfunctional sequences, but some others might be an important source of new genes. We have studied the evolution of a Phosphoglycerate mutase processed gene (PGAM3) described in humans and believed to be a pseudogene. We sequenced PGAM3 in chimpanzee and macaque and obtained polymorphism data for human coding region. We found evidence that PGAM3 likely produces a functional protein, as an example of addressing functionality for human processed pseudogenes. First, the open reading frame was intact despite many deletions that occurred in the 3' untranslated region. Second, it appears that the gene is expressed. Finally, interspecies and intraspecies variation for PGAM3 was not consistent with the neutral model proposed for pseudogenes, suggesting that a new functional primate gene has originated. Amino acid divergence was significantly higher than synonymous divergence in PGAM3 lineage, supporting positive selection acting in this gene. This role of selection was further supported by the excess of rare alleles in a population genetic analysis. PGAM3 is located in a region of very low recombination; therefore, it is conceivable that the rapid fixation events in this newly arising gene may have contributed to a selective sweep of variation in the region.  相似文献   

12.
13.
ABSTRACT: BACKGROUND: The genetic background of the cynomolgus macaque (Macaca fascicularis) is made complex by the high genetic diversity, population structure, and gene introgression from the closely related rhesus macaque (Macaca mulatta). Herein we report the whole-genome sequence of a Malaysian cynomolgus macaque male with more than 40-fold coverage, which was determined using a resequencing method based on the Indian rhesus macaque genome. RESULTS: We identified approximately 9.7 million single nucleotide variants (SNVs) between the Malaysian cynomolgus and the Indian rhesus macaque genomes. Compared with humans, a smaller nonsynonymous/synonymous SNV ratio in the cynomolgus macaque suggests more effective removal of slightly deleterious mutations. Comparison of two cynomolgus (Malaysian and Vietnamese) and two rhesus (Indian and Chinese) macaque genomes, including previously published macaque genomes, suggests that Indochinese cynomolgus macaques have been more affected by gene introgression from rhesus macaques. We further identified 60 nonsynonymous SNVs that completely differentiated the cynomolgus and rhesus macaque genomes, and that could be important candidate variants for determining species-specific responses to drugs and pathogens. The demographic inference using the genome sequence data revealed that Malaysian cynomolgus macaques have experienced at least three population bottlenecks. CONCLUSIONS: This list of whole-genome SNVs will be useful for many future applications, such as an array-based genotyping system for macaque individuals. High-quality whole-genome sequencing of the cynomolgus macaque genome may aid studies on finding genetic differences that are responsible for phenotypic diversity in macaques and may help control genetic backgrounds among individuals.  相似文献   

14.
The alpha block of the human and chimpanzee major histocompatibility complex (MHC) class I genomic region contains 10 to 11 duplicated MHC class I genes, including the HLA/Patr-A, -G, and -F genes. In comparison, the alpha block of the rhesus macaque (Macaca mulatta, Mamu) has an additional 20 MHC class I genes within this orthologous region. The present study describes the identification and analysis of the duplicated segmental genomic structures (duplicons) and genomic markers within the alpha block of the rhesus macaque and their use to reconstruct the duplication history of the genes within this region. A variety of MHC class I genes, pseudogenes, transposons, and retrotransposons, such as Alu and ERV16, were used to categorize the 28 duplicons into four distinct structural categories. The phylogenetic relationship of MHC class I genes, Alu, and LTR16B sequences within the duplicons was examined by use of the Neighbor-Joining (NJ) method. Two single-duplicon tandem duplications, two polyduplicon tandem duplications with an accompanying inversion product per duplication, eight polyduplicon tandem duplications steps, 12 deletions, and at least two recombinations were reconstructed to explain the highly complex organization and evolution of the 28 duplicons (nine inversions) within the Mamu alpha block. On the basis of the phylogenetic evidence and the reconstructed tandem duplication history of the 28 duplicons, the Mamu/Patr/HLA-F ortholog was the first MHC class I gene to have been fixed without further duplication within the alpha block of primates. Assuming that the rhesus macaque and the chimpanzee/human lineages had started with the same number of MHC class I duplicons at the time of their divergence approximately 24 to 31 MYA, then the number of genes within the alpha block have been duplicated at an approximately three times greater rate in the rhesus macaque than in either the human or chimpanzee.  相似文献   

15.
16.
Studies of Y chromosome evolution often emphasize gene loss, but this loss has been counterbalanced by addition of new genes. The DAZ genes, which are critical to human spermatogenesis, were acquired by the Y chromosome in the ancestor of Old World monkeys and apes. We and our colleagues recently sequenced the rhesus macaque Y chromosome, and comparison of this sequence to human and chimpanzee enables us to reconstruct much of the evolutionary history of DAZ. We report that DAZ arrived on the Y chromosome about 38 million years ago via the transposition of at least 1.1 megabases of autosomal DNA. This transposition also brought five additional genes to the Y chromosome, but all five genes were subsequently lost through mutation or deletion. As the only surviving gene, DAZ experienced extensive restructuring, including intragenic amplification and gene duplication, and has been the target of positive selection in the chimpanzee lineage. Editor's suggested further reading in BioEssays Should Y stay or should Y go: The evolution of non‐recombining sex chromosomes Abstract  相似文献   

17.
18.
ABSTRACT: BACKGROUND: The highly improved cognitive function is the most significant change in human evolutionary history. Recently, several large-scale studies reported the evolutionary roles of DNA methylation; however, the role of DNA methylation on brain evolution is largely unknown. RESULTS: To test if DNA methylation has contributed to the evolution of human brain, with the use of MeDIP-Chip and SEQUENOM MassARRAY, we conducted a genome-wide analysis to identify differentially methylated regions (DMRs) in the brain between humans and rhesus macaques. We first identified a total of 150 candidate DMRs by the MeDIP-Chip method, among which 4DMRs were confirmed by the MassARRAY analysis. All 4 DMRs are within or close to the CpG islands, and a MIR3 repeat element was identified in one DMR, but no repeat sequence was observed in the other 3 DMRs. For the 4 DMR genes, their proteins tend to be conserved and two genes have neural related functions. Bisulfite sequencing and phylogenetic comparison among human, chimpanzee, rhesus macaque and rat suggested several regions of lineage specific DNA methylation, including a human specific hypomethylated region in the promoter of K6IRS2 gene. CONCLUSIONS: Our study provides a new angle of studying human brain evolution and understanding the evolutionary role of DNA methylation in the central nervous system. The results suggest that the patterns of DNA methylation in the brain are in general similar between humans and nonhuman primates, and only a few DMRs were identified.  相似文献   

19.
The rhesus macaque is similar to humans both anatomically and physiologically as a primate, and has therefore been used extensively in medical and biological research, including reproductive physiology. Despite sequencing of the macaque genome, limited postgenomic studies have been performed to date. In studies aimed at characterizing spermatogenesis, we successfully identified 9078 macaque testis proteins corresponding to 8662 genes, using advanced MS and an optimized proteomics platform, indicative of complex protein compositions during macaque spermatogenesis. Immunohistochemistry analysis further revealed the presence of proteins from different types of testicular cells, including Sertoli cells, Leydig cells, and various stages of germ cells. Our data provide expression evidence at protein level of 3010 protein‐coding genes in 8662 identified testis genes for the first time. We further identified 421 homologous genes from the proteome already known to be essential for male infertility in mouse. Comparative analysis of the proteome showed high similarity with the published human testis proteome, implying that macaque and human may use similar proteins to regulate spermatogenesis. Our in‐depth analysis of macaque spermatogenesis provides a rich resource for further studies, and supports the utility of macaque as a suitable model for the study of human reproduction.  相似文献   

20.
Animals recognize their external world through the detection of tens of thousands of chemical odorants. Olfactory receptor (OR) genes encode proteins for detecting odorant molecules and form the largest multigene family in mammals. It is known that humans have fewer OR genes and a higher fraction of OR pseudogenes than mice or dogs. To investigate whether these features are human specific or common to all higher primates, we identified nearly complete sets of OR genes from the chimpanzee and macaque genomes and compared them with the human OR genes. In contrast to previous studies, here we show that the number of OR genes ( approximately 810) and the fraction of pseudogenes (51%) in chimpanzees are very similar to those in humans, though macaques have considerably fewer OR genes. The pseudogenization rates and the numbers of genes affected by positive selection are also similar between humans and chimpanzees. Moreover, the most recent common ancestor between humans and chimpanzees had a larger number of functional OR genes (>500) and a lower fraction of pseudogenes (41%) than its descendents, suggesting that the OR gene repertoires are in a phase of deterioration in both lineages. Interestingly, despite the close evolutionary relationship between the 2 species, approximately 25% of their functional gene repertoires are species specific due to massive gene losses. These findings suggest that the tempo of evolution of OR genes is similar between humans and chimpanzees, but the OR gene repertoires are quite different between them. This difference might be responsible for the species-specific ability of odor perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号