首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
One of the major determinants of species richness is the amount of energy available, often measured as primary productivity. Heterogeneity of environmental variables has also been found to influence species richness. Predicting species distributions across landscapes and identifying areas that have high species richness, or vulnerable groups of species, is useful for land management. Remotely sensed data may help identify such areas, with the Normalized Difference Vegetation Index (NDVI) providing an estimate of primary productivity. We examined the relationship between maximum productivity (NDVI), heterogeneity of productivity, and species richness of birds and butterflies at multiple spatial scales. We also explored relationships between productivity, functional guilds and residency groups of birds, and vagility classes of butterflies. Positive linear relationships between maximum NDVI and number of functional guilds of birds were found at two spatial scales. We also found positive linear relationships between maximum NDVI and species richness of neotropical migrant birds at two scales. Heterogeneity of NDVI, by contrast, was negatively associated with number of functional guilds of birds and species richness of resident birds. Maximum NDVI was associated with species richness of all butterflies and of the most vagile butterflies. No association was found between heterogeneity of NDVI and species richness of butterflies. In the Great Basin, where high greenness and availability of water correspond to areas of high species richness and maximum NDVI, our results suggest that NDVI can provide a reliable basis for stratifying surveys of biodiversity, by highlighting areas of potentially high biodiversity across large areas. Measures of heterogeneity of NDVI appear to be less useful in explaining species richness.  相似文献   

3.
Landscape supplementation, which enhances densities of organisms by combination of different landscape elements, is likely common in heterogeneous landscapes, but its prevalence and effects on species richness have been little explored. Using grassland-dwelling spiders in an agricultural landscape, we postulated that richness and abundances of major constituent species are both highest in intermediate mixtures of forests and paddy fields, and that this effect derives from multi-scale landscape heterogeneity. We collected spiders in 35 grasslands in an agricultural landscape in Japan and determined how species richness and abundances of major species related to local and landscape factors across different spatial scales. We used a generalized linear model to fit data, created all possible combinations of variables at 15 spatial scales, and then explored the best models using Akaike's information criterion. Species richness showed a hump-shaped pattern in relation to surrounding forest cover, and the spatial scale determining this relationship was a 300–500-m radius around the study sites. Local variables were of minor importance for species richness. Abundances of major species also exhibited a hump-shaped pattern when plotted against forest cover. Thus, a combination of paddy fields and forests is important for enhancement of grassland spider species richness and abundance, suggesting habitat supplementation. The effective spatial scales determining abundances varied, ranging from 200 to >1000 m, probably representing different dispersal abilities. Landscape compositional heterogeneity at multiple spatial scales may be thus crucial for the maintenance of species diversity.  相似文献   

4.

Aim

Understanding connections between environment and biodiversity is crucial for conservation, identifying causes of ecosystem stress, and predicting population responses to changing environments. Explaining biodiversity requires an understanding of how species richness and environment covary across scales. Here, we identify scales and locations at which biodiversity is generated and correlates with environment.

Location

Full latitudinal range per continent.

Time Period

Present day.

Major Taxa Studied

Terrestrial vertebrates: all mammals, carnivorans, bats, songbirds, hummingbirds, amphibians.

Methods

We describe the use of wavelet power spectra, cross-power and coherence for identifying scale-dependent trends across Earth's surface. Spectra reveal scale- and location-dependent coherence between species richness and topography (E), mean annual precipitation (Pn), temperature (Tm) and annual temperature range (ΔT).

Results

>97% of species richness of taxa studied is generated at large scales, that is, wavelengths 10 3 km, with 30%–69% generated at scales 10 4 km. At these scales, richness tends to be highly coherent and anti-correlated with E and ΔT, and positively correlated with Pn and Tm. Coherence between carnivoran richness and ΔT is low across scales, implying insensitivity to seasonal temperature variations. Conversely, amphibian richness is strongly anti-correlated with ΔT at large scales. At scales 10 3 km, examined taxa, except carnivorans, show highest richness within the tropics. Terrestrial plateaux exhibit high coherence between carnivorans and E at scales 10 3 km, consistent with contribution of large-scale tectonic processes to biodiversity. Results are similar across different continents and for global latitudinal averages. Spectral admittance permits derivation of rules-of-thumb relating long-wavelength environmental and species richness trends.

Main Conclusions

Sensitivities of mammal, bird and amphibian populations to environment are highly scale dependent. At large scales, carnivoran richness is largely independent of temperature and precipitation, whereas amphibian richness correlates strongly with precipitation and temperature, and anti-correlates with temperature range. These results pave the way for spectral-based calibration of models that predict biodiversity response to climate change scenarios.  相似文献   

5.
Determinants of avian species richness at different spatial scales   总被引:9,自引:1,他引:9  
ABSTRACT. Studies of factors influencing avian biodiversity yield very different results depending on the spatial scale at which species richness is calculated. Ecological studies at small spatial scales (plot size 0.0025–0.4 km2) emphasize the importance of habitat diversity, whereas biogeographical studies at large spatial scales (quadrat size 400–50,000 km2) emphasize variables related to available energy such as temperature. In order to bridge the gap between those two approaches the bird atlas data set of Lake Constance was used to study factors determining avian species diversity at the intermediate spatial scales of landscapes (quadrat size 4–36 km2). At these spatial scales bird species richness was influenced by habitat diversity and not by variables related to available energy probably because, at the landscape scale, variation in available energy is small. Changing quadrat size between 4 and 36 km2, but keeping the geographical extension of the study constant resulted in profound changes in the degree to which the amount of different habitat types was correlated with species richness. This suggests that high species diversity is achieved by different management regimes depending on the spatial scale at which species richness is calculated. However, generally, avian species diversity seems to be determined by spatial heterogeneity at the corresponding spatial scale. Thus, protecting the diversity of landscapes and ecosystems appears to ensure also high levels of species diversity.  相似文献   

6.
7.
The variation of passerine species richness in Spain was studied at various spatial scales. Presence-absence data was resampled to construct three species richness maps in lattices of 10×10, 30×30, and 50×50 km UTM cells. The importance of habitat, species-energy, climatic variability, disturbance, history and geometric constraints hypotheses was assessed using geographical data. Stochastic, range-based models were used to simulate neutral colonization events from Europe or from Africa. The importance of small scale processes remained after the inclusion of environmental covariates, indicating a possible role of ecological interactions that was represented in the models by a conditional spatial autoregressive term. Historical effects and energy related measures explained most of the variation in regional species richness. Local and regional habitat structure measures explained the pattern only after large scale trends were considered. The differences when species richness was analyzed at each scale reveal the importance of spatial issues in diversity studies. The possible role of post glacial migration in shaping the observed patterns, and implications for conservation are discussed.  相似文献   

8.
Several studies have recently reported that common species are more important for species richness patterns than rare species. However, most such studies have been based on broad‐scale atlas data. We studied the contribution of different species occupancy, i.e. number of plots occupied, to species richness patterns emerging from species data in 50 by 50 m plots within six 140–200 ha forests in Norway. The study included vascular plants, lichens, bryophytes, and polypore fungi. We addressed the following questions: 1) are common species more correlated with species richness than rare species? 2) How do occupancy classes combine at various levels of species richness? 3) Which occupancy class is best in identifying the overall most species‐rich sites (hotspots) by sampling? The results showed that rare species were better correlated with species richness than common species when the information content was accounted for, that high species richness was associated with a higher proportion of less frequent species, and that the best occupancy class for local hotspot identification was species present in 10–30% of the plots within a forest. We argue that the observed correlations between overall richness and sub‐assembly richness are primarily structured by the combination of the distributions of species richness and species occupancy. Although these distributions result from general ecological processes, they may also be strongly affected by idiosyncratic elements of the individual datasets caused by the specific environmental composition of a study area. Hence, different datasets collected in different areas may lead to different results regarding the relative importance of common versus rare species, and such effects should be expected on both broad and fine spatial scales. Despite these effects, we suggest that infrequent species will tend to be more strongly correlated to species richness at local scales than at broader scales as a result of more right‐skewed species‐occupancy distributions.  相似文献   

9.
10.
The study of the interrelationship between productivity and biodiversity is a major research field in ecology. Theory predicts that if essential resources are heterogeneously distributed across a metacommunity, single species may dominate productivity in individual metacommunity patches, but a mixture of species will maximize productivity across the whole metacommunity. It also predicts that a balanced supply of resources within local patches should favor species coexistence, whereas resource imbalance would favor the dominance of one species. We performed an experiment with five freshwater algal species to study the effects of total supply of resources, their ratios, and species richness on biovolume production and evenness at the scale of both local patches and metacommunities. Generally, algal biovolume increased, whereas algal resource use efficiency (RUE) and evenness decreased with increasing total supply of resources in mixed communities containing all five species. In contrast to predictions for biovolume production, the species mixtures did not outperform all monocultures at the scale of metacommunities. In other words, we observed no general transgressive overyielding. However, RUE was always higher in mixtures than predicted from monocultures, and analyses indicate that resource partitioning or facilitation in mixtures resulted in higher-than-expected productivity at high resource supply. Contrasting our predictions for the local scale, balanced supply of resources did not generally favor higher local evenness, however lowest evenness was confined to patches with the most imbalanced supply. Thus, our study provides mixed support for recent theoretical advancements to understand biodiversity-productivity relationships.  相似文献   

11.
Aim To investigate how species richness and similarity of non‐native plants varies along gradients of elevation and human disturbance. Location Eight mountain regions on four continents and two oceanic islands. Methods We compared the distribution of non‐native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41–84 sites along elevational gradients using 100‐m2 plots located 0, 25 and 75 m from roadsides. We used mixed‐effects models to examine how local variation in species richness and similarity were affected by processes at three scales: among regions (global), along elevational gradients (regional) and with distance from the road (local). We used model selection and information criteria to choose best‐fit models of species richness along elevational gradients. We performed a hierarchical clustering of similarity to investigate human‐related factors and environmental filtering as potential drivers at the global scale. Results Species richness and similarity of non‐native plant species along elevational gradients were strongly influenced by factors operating at scales ranging from 100 m to 1000s of km. Non‐native species richness was highest in the New World regions, reflecting the effects of colonization from Europe. Similarity among regions was low and due mainly to certain Eurasian species, mostly native to temperate Europe, occurring in all New World regions. Elevation and distance from the road explained little of the variation in similarity. The elevational distribution of non‐native species richness varied, but was always greatest in the lower third of the range. In all regions, non‐native species richness declined away from roadsides. In three regions, this decline was steeper at higher elevations, and there was an interaction between distance and elevation. Main conclusions Because non‐native plant species are affected by processes operating at global, regional and local scales, a multi‐scale perspective is needed to understand their patterns of distribution. The processes involved include global dispersal, filtering along elevational gradients and differential establishment with distance from roadsides.  相似文献   

12.
The aim of this study was to unravel the relative role played by speleogenesis (i.e., the process in which a cave is formed), landscape‐scale variables, and geophysical factors in the determination of species richness in caves. Biological inventories from 21 caves located in the southeastern Iberian Peninsula along with partial least square (PLS) regression analysis were used to assess the relative importance of the different explanatory variables. The caves were grouped according to the similarity in their species composition; the effect that spatial distance could have on similarity was also studied using correlation between matrices. The energy and speleogenesis of caves accounted for 44.3% of the variation in species richness. The trophic level of each cave was the most significant factor in PLS regression analysis, and epigenic caves (i.e., those formed by the action of percolating water) had significantly more species than hypogenic ones (i.e., those formed by the action of upward flows in confined aquifers). Dissimilarity among the caves was very high (multiple‐site βsim = 0.92). Two main groups of caves were revealed through the cluster analysis, one formed by the western caves and the other by the eastern ones. The significant—but low—correlation found between faunistic dissimilarity and geographical distance (= .16) disappeared once the caves were split into the two groups. The extreme beta‐diversity suggests a very low connection among the caves and/or a very low dispersal capacity of the species. In the region under study, two main factors are intimately related to the richness of terrestrial subterranean species in caves: the amount of organic material (trophic level) and the formation process (genesis). This is the first time that the history of a cave genesis has been quantitatively considered to assess its importance in explaining richness patterns in comparison with other factors more widely recognized.  相似文献   

13.
Pesticides are an important potential cause of biodiversity and pollinator decline. Little is known about the impacts of pesticides on wild pollinators in the field. Insect pollinators were sampled in an agricultural system in Italy with the aim of detecting the impacts of pesticide use. The insecticide fenitrothion was over 150 times greater in toxicity than other pesticides used in the area, so sampling was set up around its application. Species richness of wild bees, bumblebees and butterflies were sampled at three spatial scales to assess responses to pesticide application: (i) the ‘field’ scale along pesticide drift gradients; (ii) the ‘landscape’ scale sampling in different crops within the area and (iii) the ‘regional’ scale comparing two river basins with contrasting agricultural intensity. At the field scale, the interaction between the application regime of the insecticide and the point in the season was important for species richness. Wild bee species richness appeared to be unaffected by one insecticide application, but declined after two and three applications. At the landscape scale, the species richness of wild bees declined in vine fields where the insecticide was applied, but did not decline in maize or uncultivated fields. At the regional scale, lower bumblebee and butterfly species richness was found in the more intensively farmed basin with higher pesticide loads. Our results suggest that wild bees are an insect pollinator group at particular risk from pesticide use. Further investigation is needed on how the type, quantity and timing of pesticide application impacts pollinators.  相似文献   

14.
The relationship between plant species richness and the space organization of the community at different small scales was studied. The study was based on 51 sites distributed along a belt from Central Spain to Portugal. Each site was analyzed with a transect cutting across the boundary between two neighboring patches of shrubland and grassland. Local spatial organization of vegetation was analyzed at different levels of detail and each transect was divided into successively smaller portions. The first division coincides with a physiognomic perception of the site in two patches (shrubland and grassland). The average spatial niche width of the species was used to calculate the spatial organization of the vegetation of each division in each site. The correlation between species richness and spatial organization depended on the block size under consideration. A physiognomic criterion, sectorizing the sites into patches of shrubland and grassland, determines noteworthy floristic changes but does not enable us to express satisfactorily the variability in plant richness. In order to account for this variation, other factors must be taken into account which act at a more detailed small-scale and which determine the internal variability of these patches. In the case studied, the species richness of the sites increases along with an increase in the percentage of species whose occupation of the space is relatively restricted within the site. Many of these species are, however, frequent within the whole of the territory studied. The results highlight the importance of the level of local scale at which the factors influencing occupation of the space, and consequentially, plant richness, preferentially act. This circumstance ought to be taken into consideration in strategies for the conservation of biological diversity, and based on the delimitation of protected spaces with criteria frequently linked to the physiognomy of the vegetation.Nomenclature: Follows T.G. Tutin et al. 1964-1980. Flora Europaea. Cambridge University Press, Cambridge  相似文献   

15.
Herbivores influence spatial heterogeneity in soil resources and vegetation in ecosystems. Despite increasing recognition that spatial heterogeneity can drive species richness at different spatial scales, few studies have quantified the effect of grazing on spatial heterogeneity and species richness simultaneously. Here we document both these variables in a rabbit-grazed grassland. We measured mean values and spatial patterns of grazing intensity, rabbit droppings, plant height, plant biomass, soil water content, ammonia and nitrate in sites grazed by rabbits and in matched, ungrazed exclosures in a grassland in southern England. Plant species richness was recorded at spatial scales ranging between 0.0001 and 150 m(2). Grazing reduced plant height and plant biomass but increased levels of ammonia and nitrate in the soil. Spatial statistics revealed that rabbit-grazed sites consisted of a mixture of heavily grazed patches with low vegetation and nutrient-rich soils (lawns) surrounded by patches of high vegetation with nutrient-poor soils (tussocks). The mean patch size (range) in the grazed controls was 2.1 +/- 0.3 m for vegetation height, 3.8 +/- 1.8 m for soil water content and 2.8 +/- 0.9 m for ammonia. This is in line with the patch sizes of grazing (2.4 +/- 0.5 m) and dropping deposition (3.7 +/- 0.6 m) by rabbits. In contrast, patchiness in the ungrazed exclosures had a larger patch size and was not present for all variables. Rabbit grazing increased plant species richness at all spatial scales. Species richness was negatively correlated with plant height, but positively correlated to the coefficient of variation of plant height at all plot sizes. Species richness in large plots (<25 m(2)) was also correlated to patch size. This study indicates that the abundance of strong competitors and the nutrient availability in the soil, as well as the heterogeneity and spatial pattern of these factors may influence species richness, but the importance of these factors can differ across spatial scales.  相似文献   

16.
Using a nested plot design in oak forests in Minnesota, USA we measured the percent cover of young individuals of an exotic invading shrub, Rhamnus cathartica (common buckthorn), to assess the relationships at two scales between invasibility, propagule and light availability, and richness and cover of native species. Comparing patches (1 m2) within 17 Quercus -dominated stands (each 1 ha, within a 100 km by 150 km area), cover of young R. cathartica was negatively related to both species richness and cover of native species. In 1 m2 patches, native cover was positively associated with native richness and thus cover-related competition was a likely mechanism by which richness influenced R. cathartica . At the landscape scale (comparing the aggregate stand-scale metrics among the 17 stands), native cover and richness were still positively related, but had opposite relationships with R. cathartica cover. R. cathartica cover was positively related to species richness and negatively related to native species cover. The observed switch at different scales from a positive to a negative relationship between R. cathartica cover and native richness supported the hypothesized scale dependence of these relations. Propagule pressure, which we estimated by measuring the size of nearby mature R. cathartica shrubs, had a large positive effect on R. cathartica seedling cover at the landscape scale. These results suggest that landscape patterns of invasion may be best understood in light of the combination of many factors including native diversity, native cover, and propagule pressure.  相似文献   

17.
流域径流泥沙对多尺度植被变化响应研究进展   总被引:16,自引:0,他引:16  
张志强  王盛萍  孙阁  谢宝元 《生态学报》2006,26(7):2356-2364
植被变化与流域水文过程构成一个反馈调节系统,是目前生态水文学研究的重点对象.由于植被自身的生长发育以及受自然因素和人为干扰的作用,植被变化具有多尺度性;由于受流域水文环境的异质性和水文通量的变化性的影响,流域水文过程也同样具有多尺度性.因此,只有通过对不同尺度生态水文过程分析,才能揭示流域径流泥沙对植被变化的响应机理.从不同时空尺度回顾了植被生长、植被演替、植被分布格局变化、造林以及森林经营措施等对流域径流泥沙影响的主要研究成果;概括了目前研究采用的3种主要方法,即植被变化对坡面水流动力学影响的实验室模拟、坡面尺度和流域尺度野外对比观测实验以及水文生态模型模拟方法;分析了植被变化与径流泥沙响应研究要考虑的尺度问题,从小区尺度上推至流域尺度或区域尺度时应考虑不同的生物物理控制过程.研究认为,要确切理解植被与径流泥沙在不同时空尺度的相互作用,必须以等级生态系统的观点为基础,有效结合生态水文与景观生态的理论,从地质-生态-水文构成的反馈调节入手,系统地理解植被变化与径流泥沙等水分养分之间的联系及反馈机制,建立尺度转换的基础.同时,作为有效的研究工具,今后水文模型的发展应更加注重耦合植被生理生态过程以及景观生态过程,从流域径流泥沙对多尺度植被变化水文响应的过程与机制入手,为植被恢复与重建、改善流域水资源状况和流域生态环境奠定基础.  相似文献   

18.
Fragmentation of the lowland tropical rain forest has resulted in loss of animal and plant species and isolation of remaining populations that puts them at risk. At Los Tuxtlas, Mexico, lowland rain forests are particularly diverse in the avian fauna they contain and while most of the forests have been fragmented by human activity, many of the fragments still harbor diverse assemblages of bird species. In these landscapes, linear strips of residual rain forest vegetation along streams as well as linear strips of vegetation fences (live fences) crossing the pastures might provide some connectivity to bird populations existed in forest fragments. We investigated bird species richness and relative abundance in one 6-km long section of live fences (LF) bordering a dirt road and in two 6-km long sections of residual forest vegetation along a river (MR) and one permanent stream (BS). We used point count procedures which resulted in the count of 2984 birds representing 133 species. At the LF site we detected 74% of the species, 72% at the BS site and 57% at the MR site. Only 38% of the species were common among sites. Neotropical migratory birds accounted for 34–41% of the species counted at all sites. While edge and open habitat birds accounted for 6–10% of the species and for 50% of the records at the three vegetation strips, about 90% of the species were forest birds. Distance to forest fragments and degree of disturbance of the vegetation seemed to negatively influence bird species presence at the BS and MR strips. Rarefaction analysis indicated that the LF strip was richer in species than the other two sites, but the occurrence of the three vegetation strips in the landscape seem to favor the presence of many more species. We discuss the value of these vegetation strips to birds as stepping stones in the fragmented landscape.  相似文献   

19.
We examined the respective roles of climate and vegetation structure on geographical variation in bird species richness. The Province of Buenos Aires (central-eastern Argentina) was divided into 146 squares of 50 km on a side. For each square we evaluated the number of bird species, the value of thirteen climatic variables, and the value of a vegetation strata index. The climatic matrix was analyzed by Principal Component Analysis (PCA), and the first factors resulting from PCA were considered as multifactorial climatic gradients. Simple and Partial Correlation Analysis among bird species richness, vegetation strata, and the first two factors derived from PCA (65% of total variation) indicated that bird richness distribution was determined by the availability of vegetation strata, associated with different vegetation types that, at the same time, were influenced by the climatic conditions summarized in the first climatic factor (a gradient of precipitation, relative humidity, annual termical amplitude, and frost occurrence). This relationships reflect the complexity of factors that can act directly as well as indirectly on the geographical patterns in species richness. Also, we evaluated the importance of study scale comparing our results with previous studies at macrogeographic and local scales, found out that the vegetation structure was the principal determinant of bird species richness at this three geographical scales.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号