首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this paper was to assess the congruency of leaf traits and soil characteristics and to analyze the survival strategies of different plant functional types in response to drought and nutrient-poor environments in the southeastern Ke’erqin Sandy Lands in China. Six leaf traits-leaf thickness (TH), density (DN), specific leaf area (SLA), leaf dry weight to fresh weight ratio (DW/FW), leaf N concentration (Nmass), and N resorption efficiency (NREmass)-of 42 plant species were investigated at four sites. The correlations between leaf traits and soil characteristics-organic C (OC), total N (TN), total P (TP), and soil moisture (SM)-were examined. We found that the six leaf traits across all the 42 species showed large variations and that DW/FW was negatively correlated with OC, TN, TP, and SM (P<0.05), while other leaf traits showed no significant correlations with soil characteristics. To find the dissimilarity to accommodate environment, a hierarchical agglomerative clustering analysis was made of all the species. All the species clustered into three groups except the Scutellaria baicalensis. Species of group III might be most tolerant of an arid environment, and species of group II might avoid nutrient stress in the nutrient-poor environment, while group I was somewhat intermediate. Therefore, species from the different groups may be selected for use in vegetation restoration of different sites based on soil moisture and nutrient conditions.  相似文献   

2.
刘冬  张剑  包雅兰  赵海燕  陈涛 《生态学报》2020,40(11):3804-3812
土壤水分是影响干旱区植物养分吸收和利用策略的关键因子之一。研究不同水分梯度叶片与土壤生态化学计量特征,有助于揭示植物对环境变化的响应特征及生态适应性。通过野外调查与实验分析,对敦煌阳关不同水分梯度芦苇叶片与土壤碳(C)、氮(N)、磷(P)生态化学计量特征及其关系进行了研究。结果表明:(1)随土壤含水率升高,叶片C、N、P含量降低,叶片C/N、C/P、N/P升高。(2)随土壤含水率升高,土壤有机碳(OC)、总氮(TN)、总磷(TP)含量及土壤N/P升高,土壤C/N降低,土壤C/P先升后降。(3)低水分梯度叶片N、C/N与土壤N、C/N显著负相关(P<0.05),叶片C、P、C/P、N/P与土壤C、P、C/P、N/P无显著相关性(P>0.05);高、中水分梯度叶片C、N、P与土壤C、N、P化学计量特征相关性均不显著(P>0.05)。低水分梯度叶片受干旱胁迫和土壤养分制约,且能够保持较高的叶养分含量,体现了干旱区湿地植物异质生境下独特的养分调节机制。  相似文献   

3.
Aim This first global quantification of the relationship between leaf traits and soil nutrient fertility reflects the trade‐off between growth and nutrient conservation. The power of soils versus climate in predicting leaf trait values is assessed in bivariate and multivariate analyses and is compared with the distribution of growth forms (as a discrete classification of vegetation) across gradients of soil fertility and climate. Location All continents except for Antarctica. Methods Data on specific leaf area (SLA), leaf N concentration (LNC), leaf P concentration (LPC) and leaf N:P were collected for 474 species distributed across 99 sites (809 records), together with abiotic information from each study site. Individual and combined effects of soils and climate on leaf traits were quantified using maximum likelihood methods. Differences in occurrence of growth form across soil fertility and climate were determined by one‐way ANOVA. Results There was a consistent increase in SLA, LNC and LPC with increasing soil fertility. SLA was related to proxies of N supply, LNC to both soil total N and P and LPC was only related to proxies of P supply. Soil nutrient measures explained more variance in leaf traits among sites than climate in bivariate analysis. Multivariate analysis showed that climate interacted with soil nutrients for SLA and area‐based LNC. Mass‐based LNC and LPC were determined mostly by soil fertility, but soil P was highly correlated to precipitation. Relationships of leaf traits to soil nutrients were stronger than those of growth form versus soil nutrients. In contrast, climate determined distribution of growth form more strongly than it did leaf traits. Main conclusions We provide the first global quantification of the trade‐off between traits associated with growth and resource conservation ‘strategies’ in relation to soil fertility. Precipitation but not temperature affected this trade‐off. Continuous leaf traits might be better predictors of plant responses to nutrient supply than growth form, but growth forms reflect important aspects of plant species distribution with climate.  相似文献   

4.
滇中喀斯特41种不同生长型植物叶性状研究   总被引:2,自引:0,他引:2  
庞志强  卢炜丽  姜丽莎  靳珂  亓峥 《广西植物》2019,39(8):1126-1138
该研究以云南石林喀斯特地区41种主要植物(乔木19种、灌木10种、藤本4种、草本8种)为对象,对其叶面积(AR)、叶鲜重(FW)、叶干重(DW)、叶厚度(TH)、叶绿素含量(Chlc)等进行了测定,得到不同植物比叶面积(SLA)、叶干物质含量(DMC)等指标。结果表明:(1)在物种水平上7项植物叶性状值变化范围较大,不同生长型植物差异显著。(2) 41种植物的SLA与DMC之间呈极显著负相关(P0.01),AR与FW、DW呈极显著正相关(P0.01),TH与Chlc呈极显著正相关(P0.01),其他因子间相关性不显著。(3)该研究区植物叶性状变异范围为15.82%~139.14%,多为高变异系数(84.40%~131.01%),叶性状变异中AR与FW贡献率较高,分别为84.40%、90.28%,不同生长型植物在TH上稳定性较好。(4)石林喀斯特地区植物叶片适应特殊生境时表现出较低的TH、SLA、Chlc和较高的DMC等特征。这说明石林喀斯特地区植物通过形成不同的叶性状特征来适应特殊生境,可为喀斯特地区的植被保护与恢复提供理论指导。  相似文献   

5.
Understanding how patterns of leaf nutrient traits respond to groundwater depth is crucial for modeling the nutrient cycling of desert riparian ecosystems and forecasting the responses of ecosystems to global changes. In this study, we measured leaf nutrients along a transect across a groundwater depth gradient in the downstream Heihe River to explore the response of leaf nutrient traits to groundwater depth and soil properties. We found that leaf nutrient traits of dominant species showed different responses to groundwater depth gradient. Leaf C, leaf N, leaf P, and leaf K decreased significantly with groundwater depth, whereas patterns of leaf C/N and leaf N/P followed quadratic relationships with groundwater depth. Meanwhile, leaf C/P did not vary significantly along the groundwater depth gradient. Variations in leaf nutrient traits were associated with soil properties (e.g., soil bulk density, soil pH). Groundwater depth and soil pH jointly regulated the variation of leaf nutrient traits; however, groundwater depth explained the variation of leaf nutrient traits better than did soil pH. At the local scale in the typical desert riparian ecosystem, the dominant species was characterized by low leaf C, leaf N, and leaf P, but high leaf N/P and leaf C/P, indicating that desert riparian plants might be more limited by P than N in the growing season. Our observations will help to reveal specific adaptation patterns in relation to the groundwater depth gradient for dominant desert riparian species, provide insights into adaptive trends of leaf nutrient traits, and add information relevant to understanding the adaptive strategies of desert riparian forest vegetation to moisture gradients.  相似文献   

6.
《植物生态学报》2016,40(10):991
Aims Understanding ecological implications of plant functional traits is helpful in exploring community assembly under different environments of nature and human disturbances, and then to reveal the maintenance mechanism of the ecosystem services. By analyzing vegetation and soil data derived from field observations in Leymus chinensis steppe of Xilin River Basin in Nei Mongol, we aimed to explore the responses of plant functional traits to changing soil nutrients at different degradation stages. Methods We observed 69 plots for both plant community structure and soil attributes using quadrat and soil-drilling methods. Five plant functional traits, namely the specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon to nitrogen ratio (C:N), leaf lignin content (LLC), and maximum height (MH), were measured for each plot. We also tested soil attributes, such as total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and organic carbon (OC). The sixty-nine communities were classified into four groups (undegraded L. chinensis + forbs, slightly degraded L. chinensis + Stipa sp., moderately degraded L. chinensis + Cleistogenes squarrosa, and heavily degraded L. chinensis + Artemisia frigida) using TWINSPAN software. The relationships between plant functional traits and soil nutrient variables were analyzed for the four community groups using the Pearson’s correlation test with SPSS 21.0 software. Important findings (1) The soil nutrients decreased with the grassland degradation process and there were significant differences in TN and TP between the undegraded L. chinensis + forbs and heavily degraded L. chinensis + A. frigida communities; (2) plant functional traits also showed strong differences between the degradation stages. MH and C:N decreased with degradation. A significant difference was observed in MH between the undegraded L. chinensis + forbs and slightly degraded L. chinensis + Stipa sp. communities. The difference in C:N was also significant between the undegraded L. chinensis + forbs and heavily degraded L. chinensis + A. frigida communities; (3) the effects of soil nutrients on plant functional traits changed with grassland degradation. AN was negatively correlated with MH, LLC, and C:N in the slightly degraded L. chinensis + Stipa sp. community. In the moderately degraded L. chinensis + C. squarrosa community, those three traits mentioned above showed significantly positive correlations with TP; (4) while analyzing the degraded grassland, different relationships between plant functional traits were found. In the slightly degraded L. chinensis + Stipa sp. community, LLC was positively correlated with all other traits. Moreover, positive correlations also occurred between C:N and MH, C:N and LDMC, and C:N and LLC. In the heavily degraded L. chinensis + A. frigida community, all traits demonstrated the most significantly positive correlations.  相似文献   

7.
深入认识植物功能性状的生态学含义, 对于阐明不同自然与人为干扰环境下的群落构建途径, 进一步揭示生态系统服务维持机制具有重要的理论意义。该文以内蒙古锡林河流域羊草(Leymus chinensis)草原不同退化演替阶段的群落为研究对象, 分析了土壤养分与植物功能性状的变化特征及两者之间的关系。结果表明: (1)退化导致土壤养分含量逐渐减少, 全氮和全磷在未退化的羊草+杂类草群落与严重退化的羊草+冷蒿(Artemisia frigida)群落之间差异显著; (2)随着退化演替的进程, 群落最大高度和叶片碳氮比减小, 群落最大高度在未退化的羊草+杂类草群落与轻度退化的羊草+针茅(Stipa sp.)群落之间差异显著, 碳氮比在未退化的羊草+杂类草群落与严重退化的羊草+冷蒿群落之间差异显著; (3)不同退化演替阶段的群落, 其土壤养分对植物功能性状的影响有所差异。在羊草+针茅群落, 速效氮与群落最大高度、叶片木质素含量和叶片碳氮比均呈显著负相关关系。而在羊草+糙隐子草(Cleistogenes squarrosa)群落中, 上述3种植物功能性状则表现为均与全磷含量显著正相关; (4)群落植物功能性状之间的关系也因退化阶段不同而有所不同。在轻度退化的羊草+针茅群落中, 叶片木质素含量与其他4个功能性状显著正相关, 叶片碳氮比与群落最大高度、叶干物质含量、木质素含量呈显著正相关关系。在严重退化的羊草+冷蒿群落中, 所有性状均呈极显著正相关关系。表明植物通过功能性状的协调或组合, 以适应贫瘠的土壤环境。上述结果深化了对典型草原退化演替的认识, 对退化草地的恢复与保护具有一定的指导意义。  相似文献   

8.
马衔山不同海拔土壤碳、氮、磷含量及生态化学计量特征   总被引:3,自引:0,他引:3  
研究半干旱地区土壤碳、氮、磷化学计量特征,了解其空间变化规律,有助于揭示半干旱地区C、N、P循环对全球气候变化的响应。本研究以半干旱区的马衔山为对象,选择5个海拔的7个样地,采集0~15、15~30 cm层的土壤,测定其有机碳(SOC)、全氮(TN)、全磷(TP)、pH、含水率等理化性质,分析其SOC、TN、TP化学计量与土壤理化因子之间的关系。结果表明:(1) 0~15 cm土壤SOC、TN、TP含量高于15~30 cm土壤。表层土壤SOC、TN含量随海拔升高呈增加趋势,TP含量随海拔升高变化较小。(2) C∶N随海拔增加呈先增加后降低趋势,C∶P、N∶P随海拔升高均呈增加趋势。(3)在0~15 cm土壤中,pH与SOC、TN含量及C∶P呈显著负相关,在15~30 cm土层中,pH与SOC、TN、TP含量及化学计量特征关系不显著;土壤含水率与0~15、15~30 cm层土壤中SOC、TN含量均呈极显著正相关。本研究显示,在半干旱区的马衔山地区,土壤含水率随海拔增加而增加,而SOC、TN含量及C∶P、N∶P也呈增加趋势,土壤养分含量及化学计量均受土壤含水率影响。  相似文献   

9.
祁连山青海云杉叶片氮、磷含量随海拔变化特征   总被引:2,自引:0,他引:2  
于2005年9月在祁连山北坡沿海拔梯度测定了青海云杉(Picea crassifolia)叶片氮、磷含量.结果表明,青海云杉叶氮、磷平均含量分别为9.75和0.97 mg·g-1.在种间水平上,青海云杉叶片氮、磷含量明显低于全球松科其它针叶树种;在种内水平上,随着海拔的增加,青海云杉叶片氮含量表现出降低的趋势,叶片磷含量变化趋势不明显.叶片氮含量与年均气温呈显著正相关关系(r=0.616**),与土壤水分呈显著负相关关系(r=-0.640**),与土壤有机质、全氮均呈显著负相关关系(r=-0.591**,r=-0.564**);叶片磷含量与年均温、土壤水分之间的关系不显著;叶片氮、磷之间的比率为10.2.表明温度和水分对青海云杉叶片氮、磷含量的影响主要是通过影响土壤生物化学过程(如养分有效性、根系对养分的吸收等)来实现的,青海云杉生长更多的受到氮素限制.  相似文献   

10.
黔中石漠化区不同海拔顶坛花椒人工林生态化学计量特征   总被引:3,自引:2,他引:1  
喻阳华  钟欣平  李红 《生态学报》2019,39(15):5536-5545
了解黔中石漠化区不同海拔顶坛花椒(Zanthoxylum planispinum var.dintanensis)人工林的生态化学计量特征,有助于深入认识其养分循环规律和元素丰缺状况。对顶坛花椒人工林叶片、凋落物和土壤C、N、P、K含量进行了测定,分析了生态化学计量特征及之间的关系。结果表明:(1)顶坛花椒人工林叶片OC、TN、TP、TK分别为228.11—446.81、0.96—5.69、2.17—5.60、6.42—17.74 g/kg,凋落物OC、TN、TP、TK依次为239.19—415.25、1.70—4.62、1.83—2.63、1.80—4.26 g/kg,土壤OC、TN、TP、TK分别为29.69—53.17、2.99—6.41、0.18—1.52、15.01—21.14 g/kg,土壤养分呈现低N高P格局;(2)叶片、凋落物、土壤C、N、P、K生态化学计量随海拔的分异规律不完全一致,其变化特征能够表明C、N来源多样,P、K来源相对固定;(3)土壤养分含量与叶片养分含量、生态化学计量之间多表现出显著相关,表明叶片养分主要来自土壤;总体上,土壤养分含量及其生态化学计量与凋落物养分含量具有弱的相关性,与凋落物养分生态化学计量具有强的相关性,表明凋落物和土壤之间存在一定的养分转换强度但是并非完全继承。  相似文献   

11.
科尔沁沙地东南部地区主要植物叶片性状及其相互关系   总被引:25,自引:0,他引:25  
选取科尔沁沙地东南部地区23种主要植物,将其划分成草本、灌木和乔木3种生长型,并分别测定其叶片鲜重(FW)、干重(DW)、叶干物质含量(DMC)、面积(AR)、比叶面积(SLA)和厚度(TH)等6项叶片性状因子。结果表明,草本植物的叶片性状比灌木和乔木变异大;平均SLA和DMC草本<灌木<乔木,DW反之,而TH则没有明显的变化。方差分析发现,除DW和TH外,SLA和DMC在不同生长型中的变化显著,并且SLA与DMC呈显著负相关,说明SLA和DMC是在植物资源利用分类轴上划分植物种类的最佳变量。对于厚度,还需进一步进行研究。  相似文献   

12.
Estimation of leaf nutrient composition of dominant plant species from contrasting habitats (i.e., karst and nonkarst forests) provides an opportunity to understand how plants are adapted to karst habitats from the perspective of leaf traits. Here, we measured leaf traits—specific leaf area (SLA), concentrations of total carbon ([TC]), nitrogen ([TN]), phosphorus ([TP]), calcium ([Ca]), magnesium ([Mg]), manganese ([Mn]), minerals ([Min]), soluble sugars, soluble phenolics, lipids, and organic acids ([OA])—and calculated water‐use efficiency (WUE), construction costs (CC), and N/P ratios, and searched for correlations between these traits of 18 abundant plant species in karst and nonkarst forests in southwestern China. Variation in leaf traits within and across the abundant species was both divergent and convergent. Leaf [TC], [Ca], [Min], [OA], and CC were habitat‐dependent, while the others were not habitat‐ but species‐specific. The correlations among [TN], [TP], SLA, [TC], CC, [Min], WUE, [OA], and CC were habitat‐independent, and inherently associated with plant growth and carbon allocation; those between [CC] and [Lip], between [Ca] and [Mg], and between [Mg] and [WUE] were habitat‐dependent. Habitat significantly affected leaf [Ca] and thus indirectly affected leaf [OA], [Min], and CC. Our results indicate that plants may regulate leaf [Ca] to moderate levels via adjusting leaf [OA] under both high and low soil Ca availability, and offer new insights into the abundance of common plant species in contrasting habitats.  相似文献   

13.
Functional traits reflecting the resource economy and growth strategy of plants vary widely both within and among ecosystems. Theory suggests that trait variation within a community may determine the relative abundance of species, though this idea requires more empirical support.We set up a long-term succession experiment in a nutrient-poor wetland, planting seedlings of twelve fenland species in different relative abundances and absolute densities, thereby creating 24 communities. The biomass of these species and the soil water and nutrient status of the system were monitored over ten years. Using these data, we could relate the changing relative abundance of species to five traits – leaf dry matter content (LDMC), leaf nitrogen concentration (LNC), specific leaf area (SLA), relative growth rate (RGR), and seed mass (SM).The initial communities converged after ten years to a common dominance–diversity structure, with two species accounting for 82% of total biomass. Soil water and nutrient conditions remained largely constant. By the end of the experiment, community trait structure had changed so that species functional traits were significantly related to their relative abundance. The most abundant species had high LDMC and SM, but low RGR and SLA, and varied little in LNC, suggesting that investment in leaf structure and retention of nutrients were most important for species dominance under low nutrient conditions. Our results provide experimental evidence that dominance–subdominance structures in plant communities are governed by functional traits.  相似文献   

14.
Aim Our aim was to address the potential effect of the geographical range size of species on the relationships between plant traits, soil and climate in Chinese grasslands. Previous analyses tended to examine plant–environment relationships across many species while ignoring that species with different range sizes may respond differently to the environment. Here we hypothesized that leaf traits of narrow‐ranging species would be more strongly correlated with soil and climatic variables than those of wide‐ranging species. Location Chinese grasslands. Methods Data on leaf traits, including nitrogen and phosphorus concentrations, carbon/nitrogen ratio, nitrogen/phosphorus ratio and specific leaf area, as well as species range sizes for 208 species distributed across 178 sites in Chinese grasslands were collected. Soil and climate information for each study site was also gathered. The effects of range size on leaf traits were tested using one‐way ANOVA. Correlations between leaf traits, soil and climate were calculated for all species pooled together and for species partitioned into range size quartiles, from the first (narrowest‐ ranging 25%) to the fourth (widest‐ranging 25%). Results Narrow‐ranging species tended to occur at high altitude with lower temperature but higher soil nutrient concentrations compared with wide‐ranging species. No direct link between leaf traits and species range sizes was detected. However, patterns of leaf–soil nutrient relationships changed significantly across levels of range size. Narrow‐ranging species tended to be more sensitive to variation in soil nutrient availability than wide‐ranging species, resulting in a shift from a positive leaf–soil nutrient relationship for narrow‐ranging plants to no relationship for wide‐ranging plants. Species responses to climatic variables were unrelated to their range sizes. Main conclusions The close relationship between leaf and soil nutrients indicates a specialization of narrow‐ranging species to particular habitats whereas wide‐ranging species may be able to better withstand changes in environment such as soil fertility over a large area.  相似文献   

15.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

16.
植物回收衰老叶片的氮是植物重要的养分保持和环境适应机制,在寒旱贫瘠的生境更是如此。为了理解降水梯度上植物对高寒贫瘠环境的养分适应特征,研究了羌塘高寒草原优势物种紫花针茅叶片氮回收策略及其与环境因子的关系。结果表明,降水梯度带上紫花针茅叶片具有较高的叶氮水平和氮回收能力。生长季盛期紫花针茅绿叶平均氮含量为(23.87±3.92)g/kg,高于中国草地平均水平(20.9 g/kg)及全球平均值(20.1 g/kg);绿叶氮含量与年降水量(MAP)呈显著负相关,干旱端(西部)绿叶中氮含量明显高于湿润端(东部)。枯叶养分回收后的氮水平(NRP)很低,平均为(6.76±1.42)g/kg,叶片平均氮回收效率(NRE)为(71.25±6.46)%,明显高于中国温带草原和全球的平均水平(46.9%—58.5%)。枯叶中氮回收水平对叶片氮回收效率起决定作用,是维持高养分回收效率的物质基础。NRE与MAP、土壤全氮(TN)和土壤无机氮呈显著负相关;NRP与TN相关性不显著,但与土壤无机氮显著负相关。尽管NRE与NRP呈显著负相关,但二者与绿叶氮含量均没有显著相关性。年均气温、海拔对NRE和NRP影响均不显著。因此,紫花针茅叶片极高的NRE和低NRP反映了它对极端干旱贫瘠环境的养分保持能力,通过内部氮循环来降低养分流失。土壤氮的有效性是影响紫花针茅叶片氮回收能力的关键因子,降水通过影响土壤氮的有效性以及绿叶中氮含量间接影响紫花针茅叶片氮回收效率。  相似文献   

17.
黄土丘陵区植物叶片与细根功能性状关系及其变化   总被引:6,自引:0,他引:6  
施宇  温仲明  龚时慧 《生态学报》2011,31(22):6805-6814
通过植物叶片功能性状(比叶面积、叶组织密度、叶氮含量)和细根功能性状(比根长、根组织密度、根氮含量)间的相互关系,分析植物对环境的适应途径;然后根据性状间的差异进行了层次聚类,将物种划分为3大功能型,并分析了不同功能型对环境的适应策略.结果表明:黄土丘陵区延河流域149种植物的叶氮含量与比叶面积和根氮含量正相关、与叶组织密度负相关,比根长与根组织密度负相关,除了根氮含量,其余根性状与叶性状不相关.此外,功能性状间关系变化和适应策略在不同功能型之间也存在差异.功能型1的植物具有最强的耐旱力和防御力;功能型3的植物具有最强的养分维持能力用以对抗营养贫瘠的环境;功能型2的植物居中,生长速率最高,具有较强的竞争力、分布最广;根据C-S-R理论,功能型1和3属于“胁迫忍耐型”策略(S策略),功能型2则属于“竞争型”(C)和“干扰型”(R)策略的综合.研究结果为黄土丘陵区植被恢复规划及物种配置等提供依据.  相似文献   

18.
Leaf longevity and nutrient resorption efficiency are important strategies to conserve plant nutrients. Theory suggests a negative relationship between them and also proposes that high concentration of phenolics in long‐lived leaves may reduce nutrient resorption. In order to provide new evidence on these relationships, we explored whether N‐resorption efficiency is related to leaf longevity, secondary compounds and other leaf traits in coexisting plant species of different life forms in the arid Patagonian Monte, Argentina. We assessed N‐resorption efficiency, green leaf traits (leaf mass per area (LMA), leaf longevity and lignin, total soluble phenolics and N concentrations) and N concentration in senescent leaves of 12 species of different life forms (evergreen shrubs, deciduous shrubs and perennial grasses) with contrasting leaf traits. We found that leaf longevity was positively correlated to LMA and lignin, and negatively correlated to N concentration in green leaves. N concentrations both in green and senescent leaves were positively related. N‐resorption efficiency was not associated with the concentration of secondary compounds (total soluble phenolics and lignin) but it was negatively related to LMA and leaf longevity and positively related to N concentration in green leaves. Furthermore, leaf traits overlapped among life forms highlighting that life forms are not a good indicator of the functional properties (at least in relation to nutrient conservation) of species. In conclusion, our findings indicated that differences in N‐resorption efficiency among coexisting species were more related to N concentration in green leaves, leaf lifespan and LMA than to the presence of secondary compounds at least those assessed in our study (soluble phenolics and lignin). Accordingly, N‐resorption efficiency seems to be modulated, at least in part, by the productivity–persistence trade‐off.  相似文献   

19.
植物叶片的养分重吸收是养分贫瘠生境中植物重要的养分保存机制。研究叶片养分重吸收对土壤水分的响应,有助于了解植物对环境的适应策略。以敦煌阳关湿地优势植物芦苇为对象,研究不同水分条件[高: 33.5%±1.9%、中: 26.4%±1.3%、低: 11.3%±1.5%]下芦苇叶片氮磷重吸收模式及其对土壤水分的响应。结果表明: 1)随着土壤水分下降,土壤N浓度显著降低,芦苇成熟叶片及衰老叶片N浓度显著升高,成熟叶片和衰老叶片P浓度及土壤P浓度均无显著变化。2)高水分条件叶片N重吸收效率为 76.1%,显著高于中(65.5%)、低(62.5%)水分条件;不同水分条件叶片P重吸收效率无显著差异。3)成熟叶片和衰老叶片N浓度与叶片N重吸收效率呈极显著负相关;成熟叶片P浓度与叶片P重吸收效率无显著相关性,而衰老叶片P浓度与叶片P重吸收效率呈极显著负相关。说明土壤水分缺乏不利于叶片N重吸收。  相似文献   

20.
Aims Both dominance distribution of species and the composition of the dominant species determine the distribution of traits within community. Leaf carbon (C) and nitrogen (N) isotopic composition are important leaf traits, and such traits of dominant species are associated with ecosystem C, water and N cycling. Very little is known how dominant species with distinct traits (e.g. N-fixing leguminous and non-leguminous trees) mediate resource utilization of the ecosystems in stressful environment.Methods Leaves of 81 dominant leguminous and non-leguminous trees were collected in forest (moist semi-deciduous and dry semi-deciduous ecosystems) and savanna (costal savanna, Guinean savanna and west Sudanian savanna ecosystems) areas and the transitional zone (between the forest and the savanna) along the transect from the south to the north of Ghana. We measured leaf traits, i.e. leaf δ 13 C, leaf δ 15 N, leaf water content, leaf mass per area (LMA) and C and N concentration. Correlation analyses were used to examine trait–trait relationships, and relationships of leaf traits with temperature and precipitation. We used analysis of covariance to test the differences in slopes of the linear regressions between legumes and non-legumes.Important findings Leaf δ 13 C, δ 15 N, leaf water content and LMA did not differ between leguminous and non-leguminous trees. Leaf N concentration and C:N ratio differed between the two groups. Moreover, leaf traits varied significantly among the six ecosystems. δ 13 C values were negatively correlated with annual precipitation and positively correlated with mean annual temperature. In contrast, leaf δ 15 N of non-leguminous trees were positively correlated with annual precipitation and negatively correlated with mean annual temperature. For leguminous trees, such correlations were not significant. We also found significant coordination between leaf traits. However, the slopes of the linear relationships were significantly different between leguminous and non-leguminous trees. Our results indicate that shifts in dominant trees with distinct water-use efficiency were corresponded to the rainfall gradient. Moreover, leguminous trees, those characterized with relative high water-use efficiency in the low rainfall ecosystems, were also corresponded to the relative high N use efficiency. The high proportion of leguminous trees in the savannas is crucial to mitigate nutrient stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号