首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium thermocellum cell extracts exhibit specific endonuclease activity with very little non-specific exonuclease activity at 55°C. The Dam methylation system of Escherichia coli offers complete protection from digestion by C. thermocellum ATCC 27405 cell extracts for all DNA tested (totaling >100 kb, insuring that most potential restriction sequences have been exposed). Based on both the Dam recognition sequence and the similarity of cell extract and MboI DNA digests, the C. thermocellum restriction enzyme recognition sequence appears to be 5′ GATC 3′. Cell extracts made from a second thermophile, C. thermosaccharolyticum ATCC 31960 do not exhibit specific endonuclease activity under the conditions tested. Genomic DNA from C. thermocellum exhibits a Dam+ phenotype while genomic DNA from C. thermosaccharolyticum exhibits a Dam- phenotype. Received: 10 March 1995/Received revision: 4 September 1995/Accepted: 13 September 1995  相似文献   

2.
 Two type-II restriction endonucleases, BloI and BloII, have been detected in a Bifidobacterium longum strain. BloI is influenced by dam methylation: it cleaves dam - but not dam + DNA. It shows a temperature and pH optimum of 45°C and pH 7.5. Restriction analysis and cloning experiments showed that the recognition sequence is RGATCY and that the enzyme cuts 5′ to the guanine residue. It is an isoschizomer of commercial enzymes, BstYI and XhoII. The second activity is not inhibited by dam methylation. It has a temperature optimum between 25°C and 30°C and shows a broad pH optimum between 4.5 and 7.0. The activity is thermolabile and can be heat-killed by a 5 min incubation at 60°C. Cloning and sequencing experiments revealed that its recognition sequence is CTGCAG and that it cuts 5′ to the second guanine residue in the sequence. This enzyme is the first described isoschizomer of PstI. Received: 22 May 1995/Accepted: 26 July 1995  相似文献   

3.
Zhang Y  Xu C  Lu Z  Yang Y  Ge F  Zhu G  Teng M  Niu L 《Current microbiology》2002,44(4):273-279
The plasmid pUT for homologous recombination was constructed by the insertion of the 1.1-kb thiostrepton resistance (tsr R) gene into the E. coli plasmid pUB1-GI1. Plasmid pUTK was produced through ligating the cleaved plasmid pUT by KpnI. After pUT and pUTK were introduced into Streptomyces diastaticus No.7 strain M1033 (SM33) by protoplast transformation, a series of tsrR transformants were obtained, further based on enzyme assays. These results for polymerase chain reaction (PCR), DNA sequencing, restriction enzyme digestion, and recovery of cloned fragments from the transformant chromosome demonstrated the plasmid pUT and pUTK had integrated into the SM33 chromosome in three different patterns of single cross-over by homologous recombination. This directly results in double-copy GI gene in the transformant chromosome, of which one is wild-type GI gene, the other mutant GI (GIG138P, GI1) gene. Among the strains of the three kinds of recombinant patterns, one transformant was chosen and named K1, T2, and T3, respectively. The further identification of the three recombinant strains by PCR, DNA sequencing, restriction enzyme digestion, and Southern hybridization also proved there is a double-copy GI gene within their chromosome. Enzyme activity assay and thermostability analysis indicated that all three engineering strains expressed not only wild-type enzyme but also mutant GI. Received: 9 July 2001 / Accepted: 8 August 2001  相似文献   

4.
The conventional method of transketolase (TKT) activity assay uses ribose 5-phosphate and xylulose 5-phosphate as substrates. However, a new method of TKT assay is currently required since xylulose 5-phosphate is no longer commercially available and is difficult to synthesize chemically. Although there are effective assays for TKT using non-natural substrates, these are inadequate for evaluating changes in enzyme activity and affinity toward real substrates. As a solution to such problems, we describe a novel assay system using xylulokinase (XK) from Saccharomyces cerevisiae. As for this purpose, the XK was overexpressed in E. coli, separated and purified in a single step, added to induce a reaction that generated xylulose 5-phosphate, which was integrated into the conventional TKT assay. The new coupling assay gave reproducible results with E. coli TKT and had a detection limit up to 5 × 10−4 unit/mg protein. A reliable result was also achieved for the incorporation of XK and TKT into a single reaction.  相似文献   

5.
6.
Cardiac ryanodine receptors (RYR2s) infrequently exhibit coupled gating that is manifested by synchronous opening and closing. To better characterize this phenomenon, we investigated the regulation of coupled RYR2 channels by luminal Ca2 + focusing on effects that are likely mediated by the true luminal activation mechanism. By reconstituting an ion channel into a planar lipid bilayer and using substantially lower concentration of luminal Ba2 + (8 mM, the virtual absence of Ca2 +) and luminal Ca2 + (8 mM), we show that response of coupled RYR2 channels to caffeine at a diastolic cytosolic Ca2 + (90 nM) was affected by luminal Ca2 + in a similar manner as for the single RYR2 channel except the gating behavior. Whereas, the single RYR2 channel responded to luminal Ca2 + by prolongation in open and closed times, coupled RYR2 channels seemed to be resistant in this respect. In summary, we conclude that the class of Ca2 + sites located on the luminal face of coupled RYR2 channels that is responsible for the channel potentiation by luminal Ca2 + is functional and not structurally hindered by the channel coupling. Thus, the idea about non-functional luminal Ca2 + sites as a source of the apparent gating resistance of coupled RYR2 channels to luminal Ca2 + appears to be ruled out.  相似文献   

7.
TspMI, a thermostable isoschizomer of XmaI from a Thermus sp., has been characterized. The enzyme was purified to homogeneity using Cibacron-Blue 3GA agarose, Heparin agarose, SP sephadex C50, and Mono-Q fast protein liquid chromatography and was found to be a homodimer of 40 kDa. Restriction mapping and run-off sequencing of TspMI-cleaved DNA ends depicted that it cleaved at 5′C/CCGGG3′ to generate a four-base, 5′-CCGG overhang. The enzyme was sensitive to methylation of second and third cytosines in its recognition sequence. TspMI worked optimally at 60°C with 6 mM Mg2+, no Na+/K+, and showed no star activity in the presence of 25% glycerol. The enzyme could efficiently digest the DNA labeled with a higher concentration of YOYO-I (one dye molecule to one nucleotide), making it a useful candidate for real-time imaging experiments. Single molecule interaction between TspMI and λ DNA was studied using total internal reflection fluorescence microscopy. The enzyme survived 30 polymerase chain reaction (PCR) cycles in the presence of 10% glycerol and 0.5 M trehalose without any activity loss and, hence, is suitable for incorporation in restriction-endonuclease-mediated selective-PCR for various applications.Electronic Supplementary Material Supplementary material for this article is available at  相似文献   

8.
The EcoRV restriction endonuclease cleaves DNA at its recognition sequence at least a million times faster than at any other DNA sequence. The only cofactor it requires for activity is Mg2+: but in binding to DNA in the absence of Mg2+, the EcoRV enzyme shows no specificity for its recognition site. Instead, the reason why EcoRV cuts one DNA sequence faster than any other is that the rate of cleavage is controlled by the binding of Mg2+ to EcoRV-DNA complexes: the complex at the recognition site has a high affinity for Mg2+, while the complexes at other DNA sequences have low affinities for Mg2+. The structures of the EcoRV endonuclease, and of its complexes with either 8pecific or non-specific DNA, have been solved by X-ray crystallography. In the specific complex, the protein interacts with the bases in the recognition sequence and the DNA takes up a highly distorted structure. In the non-specific complex with an unrelated DNA sequence, there are virtually no interactions with the bases and the DNA retains a B-like structure. Since the free energy changes for the formation of specific and non-specific complexes are the same, the energy from the specific interactions balances that required for the distortion of the DNA. The distortion inserts the phosphate at the scissile bond into the active site of the enzyme, where it forms part of the binding site for Mg2+. Without this distortion, the EcoRV–DNA complex would be unable to bind Mg2+ and thus unable to cleave DNA. The specificity of the EcoRV restriction enzyme is therefore governed, not by DNA binding as such, but by its ability to organize the structure of the DNA to which it is bound.  相似文献   

9.
Two natural isolates from fallow-deer rumen identified as Selenomonas ruminantium were found to produce a restriction endonuclease which we called Sru4DI. This enzyme was isolated from cell extracts by phosphocellulose chromatography. Analysis of the Sru4DI recognition site showed that Sru4DI recognizes the hexanucleotide sequence 5-AT/TAAT-3 generating 5 dinucleotide protruding ends upon cleavage and thus is a true isoschizomer of VspI, a restriction enzyme isolated from Vibrio sp.  相似文献   

10.
Na+, K+-ATPase activities of the membranes obtained from intact red cells that are exposed to ouabain, digoxin, and digitoxin are inhibited. The extent of inhibition of each enzyme sample can be found by the following two assays: 1) Activity is measured by the addition of enzyme to a buffered solution containing 2 mM ATP, 3 mM Mg2+, 1 mM EDTA, 100 mM Na+, and 25 mM K+. Since little regeneration of the inhibited enzyme occurs under these conditions, the measured activity is that of the partially inhibited enzyme. 2) Enzyme is preincubated for ten minutes in the same solution from which Mg2+ and K+ are omitted, and then assayed by the addition of Mg+ and K+. Since the inhibited enzyme is completely regenerated during the preincubation period, the activity measured here serves as a control for that determined in the first assay.  相似文献   

11.
The described plasmid pEamTA was designed for parallel polymerase chain reaction (PCR) cloning of open reading frames (ORFs) in Escherichia coli. It relies on the well-known TA-cloning principle, and the “T-vector” can be generated from a plasmid preparation by digestion with the restriction enzyme Eam1105I. The single 3′-T-overhangs of the vector fragment are positioned in a way that A-tailed PCR-products beginning with the start-ATG of an ORF end up in optimal position for expression from a strong tac-promoter when ligated in correct orientation. The orientation of the insert can be checked via a reconstituted NdeI site (catATG) present in correct clones. The protocol works regardless of internal restriction sites of the PCR fragment, a major advantage when cloning a number of fragments in parallel. It also does not require 5′-primer extensions and finally delivers an expression clone for the preparation of untagged protein in less than a week.  相似文献   

12.
Ca2+ released from the sarcoplasmic reticulum (SR) via ryanodine receptor type 2 (RYR2) is the key determinant of cardiac contractility. Although activity of RYR2 channels is primary controlled by Ca2+ entry through the plasma membrane, there is growing evidence that Ca2+ in the lumen of the SR can also be effectively involved in the regulation of RYR2 channel function. In the present study, we investigated the effect of luminal Ca2+ on the response of RYR2 channels reconstituted into a planar lipid membrane to caffeine and Ca2+ added to the cytosolic side of the channel. We performed two sets of experiments when the channel was exposed to either luminal Ba2+ or Ca2+. The given ion served also as a charge carrier. Luminal Ca2+ effectively shifted the EC50 for caffeine sensitivity to a lower concentration but did not modify the response of RYR2 channels to cytosolic Ca2+. Importantly, luminal Ca2+ exerted an effect on channel gating kinetics. Both the open and closed dwell times were considerably prolonged over the whole range (response to caffeine) or the partial range (response to cytosolic Ca2+) of open probability. Our results provide strong evidence that an alteration of the gating kinetics is the result of the interaction of luminal Ca2+ with the luminally located Ca2+ regulatory sites on the RYR2 channel complex.  相似文献   

13.
Malignant hyperthermia (MH) is a pharmacogenetic disorder that manifests in susceptible individuals exposed to volatile anaesthetics. Over 400 variants in the ryanodine receptor 1 (RYR1) have been reported but relatively few have been definitively associated with susceptibility to MH. This is largely due to the technical challenges of demonstrating abnormal Ca2+ release from the sarcoplasmic reticulum. This study focuses on the R2452W variant and its functional characterisation with the aim of classifying this variant as MH causative. HEK293 cells were transiently transfected with full-length human wildtype or R2452W mutant RYR1 cDNA. In addition, B-lymphoblastoid cells from blood and myoblasts propagated from in vitro contracture tests were extracted from patients positive for the R2452W variant. All cell lines generated were loaded with the ratiometric dye Fura-2 AM, stimulated with the RYR1-specific agonist 4-chloro-m-cresol and Ca2+ release from the sarcoplasmic/endoplasmic reticulum was monitored by fluorescence emission. All cells expressing the RYR1 R2452W variant show a significantly higher Ca2+ release in response to the agonist, 4-chloro-m-cresol, compared to cells expressing RYR1 WT. These results indicate that the R2452W variant results in a hypersensitive ryanodine receptor 1 and suggest that the R2452W variant in the ryanodine receptor 1 is likely to be causative of MH.  相似文献   

14.
The recombinant β-carotene 15,15′-monooxygenase from chicken liver was purified as a single 60 kDa band by His-Trap HP and Resource Q chromatography. It had a molecular mass of 240 kDa by gel filtration indicating the native form to be tetramer. The enzyme converted β-carotene under maximal conditions (pH 8.0 and 37°C) with a k cat of 1.65 min−1 and a K m of 26 μM and its conversion yield of β-carotene to retinal was 120% (mol mol−1). The enzyme displayed catalytic efficiency and conversion yield for β-carotene, β-cryptoxanthin, β-apo-8′-carotenal, β-apo-4′-carotenal, α-carotene and γ-carotene in decreasing order but not for zeaxanthin, lutein, β-apo-12′-carotenal and lycopene, suggesting that the presence of one unsubstituted β-ionone ring in a substrate with a molecular weight greater than C30 seems to be essential for enzyme activity.  相似文献   

15.
A thermophile, isolated from geothermal areas in the northern Himalayan region of India, was identified by partial 16S rDNA sequence (GenBank accession # AF482430) analysis as Anoxybacillus flavithermus. The isolate produced BflI (REBASE # 4910), a Type II restriction endonuclease, which recognized the sequence 5′-CCNNNNN/NNGG-3′ and was the isoschizomer of BsiYI. The enzyme was purified to homogeneity by passing through Cibacron Blue F3GA agarose, DEAE-cellulose, heparin-agarose and MonoQ FPLC. The purified enzyme (MW 36 kDa) worked best at 60 °C in Promega's buffer C and preferentially required Co++(0.4 mM) as cofactor followed by Mg++(10 mM) and Mn++(1 mM). The enzyme showed high specific activity and worked in the presence of high concentrations of β-mercaptoethanol (200 mM), Triton-X-100 (25%), urea (30%), formamide (6%) and guanidine (40 mM) and showed no star activity in the presence of 40% glycerol. In the absence of any stabilizing agent, BflI retained t 1/2 for at least 96 h at 37 °C, 6 h at 60 °C and 6 months at 4 °C. N-terminal sequencing showed that its first 10 amino acid residues were DFHEDKTIAR. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Summary SPP1 DNA was cleaved by the restriction endonucleases, BglI, BglII, EcoRI, KpnI, SmaI, and SalI. The molecular weights of the DNA fragments obtained by single enzyme digestion or by consecutive digestion with two enzymes were determined by electron microscopic measurements of contour length and by gel electrophoresis. The major fragments from the six digests could be ordered to give a consistent restriction map of SPP1. The electropherograms of several digests indicated that certain fragments occurred in less than stoichiometric amounts or were heterogeneous in size. Such bands carried a major part of radioactivity, when SPP1 DNA was terminally labelled with P32 prior to degradation by restriction enzymes. These results, and studies of the effect of exonuclease III treatment on restriction enzyme patterns define the terminal restriction fragments. All data obaained support the conclusion drawn in the preceding paper (Morelli et al., 1978b) that the SPP1 genome is terminally redundant and partially circularly permuted.Part of this work is from the doctoral dissertations to be submitted to Stanford University1 and the Freie Universität Berlin2  相似文献   

17.
A restriction endonuclease with a novel site-specificity has been isolated from the Escherichia coli strain RFL31. The nucleotide sequences around a single Eco31I cut on pBR322 DNA and two cuts of λ DNA have been compared. A common 5′GAGACC3′CTCTGG sequence occurs near each cleavage site. Precise mapping of the cleavages in both DNA strands places the cuts five nucleotides to the left of the upper sequence and one nucleotide to the left of the lower sequence. This enabled us to deduce the following recognition and cleavage specificity of Eco31I: 5 ′ G G T C T C N ↓ 3 ′ C C A G A G N N N N N ↑  相似文献   

18.
The cardiac type 2 ryanodine receptor (RYR2) is activated by Ca2+-induced Ca2+ release (CICR). The inherent positive feedback of CICR is well controlled in cells, but the nature of this control is debated. Here, we explore how the Ca2+ flux (lumen-to-cytosol) carried by an open RYR2 channel influences its own cytosolic Ca2+ regulatory sites as well as those on a neighboring channel. Both flux-dependent activation and inhibition of single channels were detected when there were super-physiological Ca2+ fluxes (>3 pA). Single-channel results indicate a pore inhibition site distance of 1.2 ± 0.16 nm and that the activation site on an open channel is shielded/protected from its own flux. Our results indicate that the Ca2+ flux mediated by an open RYR2 channel in cells (∼0.5 pA) is too small to substantially regulate (activate or inhibit) the channel carrying it, even though it is sufficient to activate a neighboring RYR2 channel.  相似文献   

19.
Three polymorphic loci have been identified in the prairie vole, Microtus ochrogaster. Together they control a group of plasma esterases which can be separated using starch gel electrophoresis. A structural locus, Es-1, produces an enzyme which from genetic evidence appears to be a dimer. The allele Es-1 a produces a wholly active subunit, and homozygotes give a single enzyme band. The product of the second allele, Es-1 o, cannot form active enzyme on its own but will dimerize with the Es-1 a subunit, giving a hybrid enzyme with a slower electrophoretic mobility than the pure Es-1 a enzyme. The third allele, Es-1 , has no detectable product. A second structural locus, Es-2, is linked to Es-1. The allele Es-2 a produces a single enzyme band, but the second allele Es-2 has no detectable product. A modifier locus, Me, changes the mobility of the Es-1 enzymes. Me f is dominant over me s, and in homozygotes for me s the mobility is reduced.This work was supported by National Science Foundation Grant GB6273.This is contribution No. 869 from that Department.  相似文献   

20.
Summary In an extensive host range study ofM. hyorhinis mink lung cells (MvlLu, ATCC CCL 64) were found to be the cells of choice for the propagation of this mycoplasm, which otherwise is often difficult to grow in a cell-free medium. Furthermore, rapid plaque assay and plaque purification procedures were developed forM. hyorhinis. The titer ofM. hyorhinis grew to 1×107 to 1×108 pfu/ml within three d postinoculation on mink lung cells. DNA restriction enzyme analysis of the genome ofM. hyorhinis was performed. Endonucleases Bst EII and Xho I are the most suitable enzymes for cleavingM. hyorhinis DNA into distinct fragment patterns. Thus, the use of the combination mink lung cells for mycoplasma growth with subsequent restriction enzyme analysis leads to an unamibiguous detection and identification toM. hyorhinis strains even in minute amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号