首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) selectively reduces the synthesis of su+III tRNA from omega 80 psu+III DNA relative to the synthesis of omega 80 RNA in a system in vitro containing DNA and Escherichia coli RNA polymerase holoenzyme as the sole macromolecular components. The response of su+III tRNA synthesis to increasing salt and to temperature in the presence of ppGpp suggests that the nucleotide may reduce the affinity of the enzyme for su+III promoters. The Ki for the selective inhibition of tRNA synthesis by ppGpp is 4 muM in contrast to the value of 150 muM for the inhibition of rRNA synthesis.  相似文献   

2.
The effect of polyamines on the in vitro and in vivo synthesis and degradation on guanosine 5'-diphosphate 3'-diphosphate (ppGpp) has been studied in Escherichia coli. The presence of 2 mM spermidine lowered the optimal Mg2+ concentration for ppGpp formation from 17 mM to 11 mM. The formation of ppGpp in the presence of 2 mM spermidine and 11 mM Mg2+ was about 15% greater than that in the presence of 17 mM Mg2+. At a concentration of less than 11 mM Mg2+, spermidine was found to stimulate ppGpp formation greatly. Putrescine did not cause any effect. When a polyamine-requiring mutant of E. coli (EWH319) was starved for an amino acid by the addition of valine, spermidine stimulated ppGpp formation. The degradation of ppGpp was not influenced significantly by polyamines.  相似文献   

3.
4.
The unusual highly phosphorylated nucleotide, guanosine 5′-diphosphate 3′-diphosphate, has been implicated in the control of development of the mouse (Irr, J. D., et al. (1974) Cell3, 249). We have been unable, however, to detect guanosine 5′-diphosphate 3′-diphosphate synthesis either in preimplantation and postimplantation mouse embryos cultured in the presence of [32P]orthophosphate or in assays using ribosomes isolated from 10- to 13-day mouse embryos. Three unidentified phosphorous-containing compounds were detected in blastocyst stage mouse embryos.  相似文献   

5.
A radioimmunoassay for guanosine-5'-diphosphate-3'-diphosphate (ppGpp) and adenosine-5'-triphosphate-3'-diphosphate (pppApp) has been developed. The assay method is based on competition of an unlabeled highly phosphorylated nucleotide with 3H-labeled highly phosphorylated nucleotide for binding sites on a specific antibody. Antibodies to ppGpp and pppApp were obtained by immunizing rabbits with the antigen prepared by conjugating ppGpp with human serum albumin using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and with the antigen prepared by conjugating 8-(6-aminohexyl)amino-adenosine-5'-triphosphate-3'-diphosphate with human serum albumin using glutaraldehyde, respectively. Antibody-bound 3H-labeled highly phosphorylated nucleotides were separated from the free 3H-labeled highly phosphorylated nucleotides by selective adsorption on dextran-coated charcoal. Displacement plots were linear over a concentration range of 5-1,000 pmol/assay tube in a log-probit percentage plot. Application of this method to biological systems offers improved accuracy and convenience compared with the previous 32PO4-labeling technique.  相似文献   

6.
E A Heinemeyer  D Richter 《Biochemistry》1978,17(25):5368-5372
Guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and guanosine 5'-diphosphate 3'-diphosphate (ppGpp) are specifically degraded by a manganese-dependent pyrophosphorylase present in spoT+ but not in spoT- strains of Escherichia coli, indicating that the enzyme is the spoT gene product. The enzyme catalyzes the release of pyrophosphate from the 3' position of ppGpp or pppGpp, yielding ppG and pppG, respectively; pppGpp could not be detected as an intermediate in the decay reaction. Degradation of (p)ppGpp is optimal in the presence of 200 to 300 mM potassium or sodium acetate, at a pH of 7.5 to 8 and a temperature of 37 degrees C.  相似文献   

7.
The synthesis of ppGpp in spoT- mutants of Escherichia coli has been invesitgated. In these mutants the first-order rate constant for ppGpp breakdown is low, and pppGpp is barely detectable. It is shown that the rate of pppGpp, and hence ppGpp, synthesis is strongly reduced compared with that observed in spot+ strains. The low rate of magic spot synthesis satisfactorily explains the low levels of pppGpp in spoT- mutants. The pentaphosphate very probably is the precursor of ppGpp as it is in wild-type, i.e. spoT+, strains.  相似文献   

8.
In a wild-type strain (relA+) of Escherichia coli, starvation of amino acid led to an immediate cessation of the synthesis of stable ribonucleic acids, together with the accumulation of an unusual nucleotide, guanosine 5'-diphosphate 3'-diphosphate, commonly known as ppGpp. This compound also accumulated during heat shock. When temperature-sensitive protein synthesis elongation factor G (EF-G) was introduced into E. coli NF859, a relA+ strain, the synthesis of ppGpp was reduced to approximately one-half that of wild-type EF-G+ cells at a nonpermissive temperature of 40 degrees C. Furthermore, fusidic acid, an inhibitor of protein synthesis which specifically inactivates EF-G, prevented any accumulation of ppGpp during the heat shock. We suggest that a functional EF-G protein is necessary for ppGpp accumulation under temperature shift conditions, possibly by mediating changes in the function of another protein, the relA gene product. However, EF-G is probably not required for the synthesis of ppGpp during the stringent response, since its inactivation did not prevent ppGpp accumulation during amino acid starvation.  相似文献   

9.
Derepression of nitrogen fixation (nif) genes in Klebsiella pneumoniae following transfer from NH+4-sufficiency to N-free medium was preceded by rapid expansion of the guanosine 5'-diphosphate 3'-diphosphate (ppGpp) pool. When derepressed in N-free medium supplemented with glutamine (600 micrograms ml-1), expression from the nifH and nifL promoters, determined as beta-galactosidase activity in nif::lac merodiploid strains, was stimulated 7-fold and nitrogenase activity 26-fold; ppGpp did not accumulate, remaining at the levels found in NH+4-repressed populations. The relaxed mutant K. pneumoniae relA40, which accumulates only very low levels of ppGpp, showed partial derepression of nitrogenase activity in the presence of glutamine, thus ppGpp is unlikely to be an effector of nif expression. ATP and GTP levels were elevated under conditions where nif expression was enhanced, consistent with previous data suggesting that maintenance of ATP levels is a prerequisite for the expression of nif genes in K. pneumoniae.  相似文献   

10.
11.
Escherichia coli SpoT protein, with 702 amino acid residues, is a bifunctional enzyme catalyzing both guanosine 5'-diphosphate 3'-diphosphate (ppGpp) degradation and its synthesis. First, we investigated how many domains are included in SpoT protein, by limited hydrolysis of the protein with serine proteases, alpha-chymotrypsin, and elastase. Based on the results, we deduced that SpoT protein is composed of two major domains, an N-terminal half domain from Met1 to Phe373 and a C-terminal half domain from Glu374 to Asn702 (C-terminal end). In addition, by a further alpha-chymotrypsin digestion, two cleaved sites were found at Arg196 in the N-terminal half domain (D12) and at Lys475 in the C-terminal half domain (D34), to produce four minor domains, D1, D2, D3, and D4. Next, plasmids expressing the two major domains (D12 and D34) and four minor domains (D1, D2, D3, and D4) were constructed. Consequently, the deduced SpoT minor domains as well as the major domains were expressed as stable protein units, except for D4. D4 may also be folded into a stable protein in E. coli cells, since high expression of D4 from a plasmid results in host cell lethality. E. coli relA -, spoT- double null strains expressing D1, D2, and D12 recovered cell growth in M9 minimal medium, but the transformants of D3, D4, and D34 did not grow in the minimal medium. This indicates that ppGpp synthetic activities could be restricted in the N-terminal half domain (D12, D1, and D2).  相似文献   

12.
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) were identified in the vegative mycelium of Streptomyces griseus. Adenosine 5'-diphosphate 3'-diphosphate (ppApp) and adenosine 5'-triphosphate 3'-diphosphate (pppApp) were not present but several other phosphorus-containing compounds which may have been inorganic polyphosphates were detected. During exponential growth of S. griseus the concentrations of ppGpp and pppGpp were several times higher than in the stationary stage. They fell sharply when exponential growth ended and then remained at an almost constant basal level. For the tetraphosphate the maximum concentration was about 50, and for the basal level about 10, pmol per millilitre of a culture with an optical density of 1.0. Production of streptomycin started several hours after exponential growth had ended and the concentrations of ppGpp and pppGpp had fallen. Streptomycin synthesis was delayed if the cells were resuspended just before production started in fresh medium lacking phosphate, but it was not delayed by glucose starvation. Both cultures, as well as cultures transferred to nitrogen-free medium, showed an immediate increase in ppGpp content to about four-fold the basal level. The results suggest that the guanosine polyphosphates do not directly control initiation of streptomycin production in S. griseus. Twelve additional species of Streptomyces examined all contained ppGpp and pppGpp.  相似文献   

13.
Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) is rapidly degraded to guanosine 5'-diphosphate (ppG) and probably pyrophosphate by an enzyme present in the ribosomal fraction prepared from spoT+ strains of Escherichia coli. The ppGpp-degrading enzyme was released from the ribosomes during dissociation at low ionic strength. Ribosomes are not essential for degradation of ppGpp, and decay of ppGpp is strictly dependent on manganese ions. The reaction is sensitive to inhibition by tetracycline, which can be reversed by MnCl2, indicating that the inhibitory effect is due to the previously described chelating properties of the antibiotic. When the ppGpp-degrading enzyme was complemented with adenosine 5'-triphosphate (pppA) and a nucleoside diphosphate kinase, decay of ppGpp was accelerated yielding pppG and ppG as major products. In the absence of pppA we have been unable to detect the ppGpp-degrading enzyme in various spoT- mutant strains indicating that this enzyme is the spoT gene product.  相似文献   

14.
15.
Through the use of a new nucleotide extraction procedure, we had previously shown that relaxed mutants of Escherichia coli exhibit a unique response to amino acid starvation (Lagosky, P. A., and Chang, F. N. (1980) J. Bacteriol. 144, 499-508). The basal level amounts of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in both relA and phenotypically relaxed relA+ rplK (relC) strains were shown to decrease at the onset of amino acid limitation and to remain severely depressed throughout the course of the starvation. Upon resupplementation of amino acid-starved relaxed mutants, the production of ppGpp resumes and results in the temporary overaccumulation of this nucleotide beyond its original basal level amount. We now show that the basal level ppGpp content of relaxed bacteria, as well as its subsequent fluctuations in response to amino acid starvation, is inversely correlated with the initial rates of RNA synthesis in these strains. The ability of ppGpp to control the rate of protein synthesis in relA mutants was also examined. It was observed that ppGpp had no apparent direct effect on the initial rates of protein synthesis in relA mutants. The constant inverse correlation which exists between ppGpp content in relA mutants, and their rates of RNa synthesis provide evidence which indicates that basal level ppGpp synthesis has definite physiological significance. It also suggests that the synthesis of basal level ppGpp might be an absolute requirement needed for normal bacterial growth.  相似文献   

16.
We have previously described a mutant strain of Escherichia coli (2S142) which shows a specific inhibition of stable RNA synthesis at 42 degrees C. The temperature-sensitive lesion mimics a carbon source downshift (diauxie lag). We therefore measured RNA synthesis and levels of ppGpp (guanosine 5'-diphosphate 3'-diphosphate) on a number of different carbon sources. There is a 6-fold variation in ppGpp levels at 42 degrees C, depending on the carbon source present. Much of the variation in ppGpp levels at 42 degrees C can be explained by variations in the decay rate of ppGpp at 42 degrees C. The rates of ribosomal RNA and total RNA synthesis also vary with the carbon source at 42 degrees C. Linear regression analysis shows only a moderately good correlation (correlation coefficient = 0.62, P = 0.0001) between the ppGpp level at 42 degrees C and the rate of rRNA synthesis at 42 degrees C. In fact, ppGpp levels are a slightly better predictor of the rate of total RNA synthesis (correlation coefficient = 0.69, P = 0.0001) at 42 degrees C. Other variables such as rate of carbon source uptake appear to have very little, if any, relationship to the rate of rRNA synthesis on the different carbon sources. Segmented linear regression analysis indicates that ppGpp levels and rates of RNA synthesis correlate best when the carbon sources are divided into two groups: 6- and 12-carbon sugars and other carbon sources. The rate of rRNA synthesis in 2S142 at 42 degrees C appears to be relatively insensitive to ppGpp levels with 6- and 12-carbon sugars as the carbon source. These data raise the possibility that carbon source may affect rRNA synthesis in a manner that is at least partially unrelated to ppGpp levels.  相似文献   

17.
18.
19.
An enzyme from extracts of the green alga Chlorella pyrenoidosa that catalyzes the reversible epimerization of guanosine 5′-diphosphate d-mannose to guanosine 5′-diphosphate l-galactose was further purified. The substrate guanosine 5′-diphosphate l-galactose was made chemically by the morpholidate procedure. An improved method was developed for the synthesis of an intermediate in that process, β-l-galactopyranosyl phosphate, via an orthoester of l-galactose. Various characteristics of the enzyme and the reaction it catalyzes were studied. A new method using gas-liquid chromatography was introduced for following the course of the reaction with unlabeled substrates.  相似文献   

20.
A protein factor TFms) that is required for ppGpp to stimulate RNA synthesis has been purified from an eluate of crude ribosomes. TFms also has the capacity to stimulate RNA synthesis without ppGpp present. Under standard conditions the action TFms and ppGpp requires uncharged tRNA. TFms and ppGpp act at inhibition to promote the formation of rifampicin-resistant or polytrI)-resistant preinitiation complexes. In the presence of rifampicin or poly(rI), tRNA is no longer required. With lambdah80dlacPs DNA as template, ppGpp together with TFms stimulated gal RNA synthesis to a much greater extent than total RNA synthesis. The stimulation of both lac and gel RNA synthesis was increased in the presence of cyclic AMP receptor and cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号